Study on the Cutting Properties of the Singer Layer Metal Bonded cBN Grinding Wheel by Electroplating in Grinding of Heat-Treated Steel SKD11

2019 ◽  
Vol 889 ◽  
pp. 80-86
Author(s):  
Truong Hoanh Son ◽  
Tran Thi Van Nga

This article presents preliminary investigations on the cutting ability of the singer layer metal-bonded cBN grinding wheel manufactured by electroplating method at Vietnamese laboratory. The cutting ability of the grinding wheel is evaluated by two factors: grinding ratio G and surface roughness of workpiece. These results are compared to those of the Japanese grinding wheels. The experimental results showed that the fabricated cBN grinding wheel has good cutting ability with high grinding ratio G. The value of the grinding ratio was 600 to 1800 in the grinding process of SKD11 steel (hardness of 62-63HRC) at the grinding speed V of 12.56m/s, feed rate S of 300mm/min, depth of cut t of 0.01mm. The maximum grinding ratio (1800) is equivalent to the average grinding ratio of the Japanese grinding wheel. The grinding ratio is also maintained up to 26 cutting hours. The good grinding surface was achieved with the average Ra of 2.5μm. In addition, the bonding of cBN abrasive to the wheel body was observed with scanning electron microscope (SEM) of the surface of grinding wheel after the cutting process. The SEM image shown that the cBN abrasive particles were not removed from the wheel surface.

2014 ◽  
Vol 1017 ◽  
pp. 592-597 ◽  
Author(s):  
Akihiko Kubo ◽  
A.M.M. Sharif Ullah ◽  
Jun’ichi Tamaki

The surface of a grinding wheel dressed by a diamond rotary dresser was generated by computer-aided simulation for the case of multipass dressing on the assumption that the grinding wheel is a homogeneous solid body and the dressing trajectories of the diamond grits are perfectly copied on the grinding wheel surface. The dressing process was visualized as a contour map of the dressed surface profile and the effects of the dressing strategy, i.e., down-cut dressing or up-cut dressing, on the grinding wheel removal process were investigated. It was found that the diamond grits remain the residual depth of cut on the surface of the grinding wheel, resulting in an actual depth of cut larger than that given by the rotary dresser.


Author(s):  
Tianyu Yu ◽  
Ashraf F. Bastawros ◽  
Abhijit Chandra

The wear rate of a grinding wheel directly affects the workpiece surface integrity and tolerances. This paper summarizes a combined experimental-modeling framework for life cycle prediction of an electroplated Cubic Boron Nitride (CBN) grinding wheel, typically utilized in nickel-based superalloy grinding. The paper presents an experimental framework to facilitate the formulation of a micro-mechanics based modeling framework. The presented work investigates the topological evolution of the grinding wheel surface and mechanisms of grit failure via depth profiling, digital microscopy and scanning electron microscopy. The results are used to elucidate the statistical evolution of the grinding wheel surface. Different modes of grit failure, including grit attritious wear, fracture and pull out haven been identified. The analysis of the surface topological features indicates a unique grit activation process, leading to a non-uniform spatial distribution of the grit wear. Additionally, single grit pull out experiment has been conducted to assess the residual strength of the grit-wheel interface and the associated state of damage percolation. The experimental results can be utilized in developing a life expectancy model for the CBN grinding wheel to assess the grit mean time to failure as well as grit surface topological evolution as a function of the process parameters.


2021 ◽  
Vol 60 (1) ◽  
pp. 691-701
Author(s):  
Zhibo Yang ◽  
Wang Sun ◽  
Dongyu He ◽  
Daocheng Han ◽  
Wei Wang ◽  
...  

Abstract In this article, the laser-assisted ultrasonic vibration dressing technique was applied to the cubic boron nitride (CBN) grinding wheel to study the effect of various process parameters (namely, laser power, dressing depth, feed rate, and grinding wheel speed) on the grinding force, surface quality, and morphological evolution of CBN abrasive particles. The results showed that abrasive particles’ morphology mainly undergoes micro-crushing, local crushing, large-area crushing, macro-crushing, and other morphological changes. The dressing force can be effectively reduced by controlling the dressing process parameters. Besides, grinding tests are performed on the grinding wheel after dressing to reveal specimens’ surface quality. Excellent grinding characteristics and grinding quality of the grinding wheel were obtained by the proposed technique with the optimized process parameters.


Author(s):  
Nguyen Hong Son ◽  
Do Duc Trung

In this paper, the analysis on the effects of cutting parameters on surface roughness of workpieces in surface grinding has been conducted. Experimental SUJ2 steel grinding process is made with CBN grinding wheel. The tests is made on an APSG-820/2A surface grinder. The Box- Behnken method has been used to design experiments. Minitab 16 statistical software has been used to analyze ANOVA test results. The results show that the feed-rate has the greatest effect on surface roughness, followed by the least effects of velocity of workpiece, depth of cut on surface roughness. The interaction between velocity of workpiece and depth of cut has the greatest effect on surface roughness, followed by the effects of the interaction between the feed-rate and depth of cut, the interaction between velocity of workpiece and the feed-rate has insignificant effects on surface roughness. This study also shows the value range of some cutting parameters for processing surface of workpiece with small roughness. Finally, a regression model of surface roughness has been established in this study.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1340-1343
Author(s):  
Quan Mao He ◽  
Jie Zhao ◽  
Fei Ling Shen

CBN wheel grinding performance on K9 glass is experimentally analyzed, which is using ultrasonic vibration assisted mechanical dressing, and dressing modes have different influences on grinding performance on the basis of the grinding surface morphology characteristics of K9 glass. The experimental results show that the CBN grinding wheel of vibration dressing mode has relatively large grinding ratio compared with ordinary dressing, and its microstructure on the grinding surface is strongly influenced by dressing modes and grinding speed.


2008 ◽  
Vol 375-376 ◽  
pp. 583-587
Author(s):  
Jin Xie ◽  
Yu Guan Zhong

Fractal dimension is proposed to evaluate grit protrusion feature concerning grit protrusion area and length. The aim is to investigate crystal integrate of diamond grit protruded from grinding wheel after dressing. First, 3D crystal diamond grits are established in AutoCAD concerning various crystal configurations. Second, fractal dimension for original diamond grit is analyzed theoretically. Then, dressing experiment is carried out to investigate fractal dimension of grit protrusion topography by suing image processing of SEM photos of dressed grinding wheel surface. Finally, grit protrusion feature is investigated by fractal dimension concerning the depth of cut in dressing process. It is confirmed that fractal dimension can display grit protrusion feature and it may be used to evaluate dressing performance.


2021 ◽  
pp. 2150107
Author(s):  
MENDERES KAM ◽  
UFUK KABASAKALOĞLU

Cylindrical grinding operation is an important metal cutting process used as a finish process to achieve the surface quality and dimensional stability of the products. In this context, experimental work and statistical analysis in researches contribute to improve product quality of manufactured parts. Tempered steels are widely used for automotive components and manufacturing applications. The objective of this study is to analyze the surface roughness (Ra) values of cryogenically (cryo) treated and tempered steels in cylindrical grinding operation. According to the grinding experiments created by the Taguchi method, grinding wheels (Al2O3 and SiC), heat treated steel samples (HT, CT24, and CT36) and depth of cut (50, 100, and 150[Formula: see text][Formula: see text]m) were selected to determine the optimum surface roughness values of these steels. The results showed that significant improvements in Ra values of cryo-treated and tempered steels were observed. The lowest Ra values were obtained in cryo-treated sample (CT36) with SiC grinding wheel and depth of cut (50[Formula: see text][Formula: see text]m).


2013 ◽  
Vol 769 ◽  
pp. 61-68 ◽  
Author(s):  
Björn Beekhuis

Metal working fluids (MWF) are widely used in grinding processes to lubricate and to remove the heat and chips from the contact zone. Apart from the chips, abrasive particles from the worn grinding wheel contaminate the metalworking fluid. The solid contaminants, in particular the abrasive particles crumbled from the grinding wheel, are believed to cause several negative effects like for example damaging the guideways of the machine tool. Furthermore, it is assumed that a pronounced interaction of the solid particles and the machined surface will decrease the achievable surface quality of the ground surfaces. Cleaning units are employed within the fluid circuit to prevent failure of the machine tool and to ensure the desired surface quality. The economic efficiency of such cleaning plants cleaning plants depends strongly on the choice of the grade of filtration (the particle size which has to be retained). A grade of filtration which exceeds the actual needs of the machining process adds unnecessary costs for operating the cleaning unit. To enable cost efficient design of filtration units the interaction between solid contaminants and the machining process has to be understood. The results of grinding experiments (face grinding of workpieces made of AISI 52100) confirm a significant increase of the surface waviness when corundum particles are added to the MWF. The underlying effect is an extraordinary tool wear combined with a locally varying effective depth of cut. The excess particles block the pores of the grinding wheel and are transported into the grinding gap. An increasing ratio of the size of solid contaminants and the size of the bonded grains on the wheel accelerates the wear of the tool.


2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040135
Author(s):  
Phi-Trong Hung ◽  
Hoang-Tien Dung ◽  
Nguyen-Kien Trung ◽  
Truong-Hoanh Son

The grinding process of Titanium (Ti) alloys is extremely difficult as the cutting temperature is much higher than other machining processes due to the low thermal conductivity, high chemical reactivity, and rapid work hardening during machining of Ti alloys. This research investigates the effect of technology parameters on the surface roughness in the surface grinding of Ti–6Al–4V (Ti64) alloy with resinoid cBN grinding wheel. The experimental results show that the surface roughness is significantly affected by the feed rate, depth of cut (DOC) and cooling condition. Increasing feed rate or DOC all provides the higher surface roughness. The surface roughness obtained in the wet grinding is higher than those of the dry cutting. The scanning electron microscopy (SEM) images of Ti64 surfaces show that the machining surface with fewer defects can be produced with wet grinding process.


2010 ◽  
Vol 126-128 ◽  
pp. 154-158 ◽  
Author(s):  
Jian Wu Yu ◽  
Tao Chen ◽  
Zhen Tao Shang ◽  
Xiao Min Sheng ◽  
Gui Zhi Xie

This paper focuses on experimental investigation on high speed grinding of 40 Cr steel with vitrified CBN grinding wheel, the effect of grinding process parameters, such as grinding speed, depth of cut, and feed rate, on the grinding force and surface roughness are analyzed The experimental results reveal that the grinding force decreases with higher grinding speed and increases with the addition of depth of cut or feed rate, and the surface roughness is satisfactory in high speed grinding.


Sign in / Sign up

Export Citation Format

Share Document