The Additive Manufacturing (AM) of Titanium Alloys

2014 ◽  
Vol 1019 ◽  
pp. 19-25 ◽  
Author(s):  
F.H. Froes ◽  
B. Dutta

High cost is the major reason that there is not more wide-spread use of titanium alloys. Powder Metallurgy (P/M) represents one cost effective approach to fabrication of titanium components and Additive Manufacturing (AM) is an emerging attractive PM Technique . In this paper AM is discussed with the emphasis on the “work horse” titanium alloy Ti-6Al-4V. The various approaches to AM are presented and discussed, followed by some examples of components produced by AM. The microstructures and mechanical properties of Ti-6Al-4V produced by AM are listed and shown to compare very well with cast and wrought product. Finally, the economic advantages to be gained using the AM technique compared to conventionally processed material are presented. Key words: Additive Manufacturing (AM), 3D Printing, CAD, CAM, Laser, Electron beam, near net shape, remanufacturing, Powder Bed Fusion (PBF), Direct Energy Deposition (DED)

2021 ◽  
Vol 111 (06) ◽  
pp. 368-371
Author(s):  
Sebastian Greco ◽  
Marc Schmidt ◽  
Benjamin Kirsch ◽  
Jan C. Aurich

Additive Fertigungsverfahren zeichnen sich durch die Möglichkeit der endkonturnahen Fertigung komplexer Geometrien aus. Die geringe Produktivität etablierter Verfahren wie etwa dem Pulverbettverfahren hemmen aktuell den wirtschaftlichen Einsatz additiver Fertigung. Das Hochgeschwindigkeits-Laserauftragschweißen (HLA) soll durch deutlich erhöhte Auftragsraten und somit bisher unerreicht hoher Produktivität bei der additiven Fertigung dazu beitragen, deren Wirtschaftlichkeit zu steigern.   Additive manufacturing enables the near-net-shape production of complex geometries. The low productivity of established processes such as powder bed processes is currently limiting the economic use of additive manufacturing. High-speed laser direct energy deposition (HS LDED) is expected to improve the economic efficiency of additive manufacturing by significantly increasing deposition rates and thus previously unattained high productivity.


2020 ◽  
Vol 7 ◽  
pp. 6
Author(s):  
Vladimir V. Popov ◽  
Alexander Fleisher

Hybrid additive manufacturing is a relatively modern trend in the integration of different additive manufacturing techniques in the traditional manufacturing production chain. Here the AM-technique is used for producing a part on another substrate part, that is manufactured by traditional manufacturing like casting or milling. Such beneficial combination of additive and traditional manufacturing helps to overcome well-known issues, like limited maximum build size, low production rate, insufficient accuracy, and surface roughness. The current paper is devoted to the classification of different approaches in the hybrid additive manufacturing of steel components. Additional discussion is related to the benefits of Powder Bed Fusion (PBF) and Direct Energy Deposition (DED) approaches for hybrid additive manufacturing of steel components.


2021 ◽  
Vol 12 (3) ◽  
pp. 3513-3521

Additive manufacturing is the term that uses the CAD data to build components layer by layer; it is also termed layered manufacturing or 3D printing. The major advantage of additive manufacturing is the capability of building components without the use of molds or tools. Five major categories of AM processes include Powder Bed Fusion (PBF), Direct Energy Deposition (DED), Material Jetting (MJ), Binder Jetting (BJ), and Sheet Lamination (SL). The sensor may be defined as a device that responds to a physical stimulus and transmits a resulting impulse. Sensor technology has been widely adopted in advanced manufacturing, aerospace, biomedical and robotic applications. Commonly used sensors are temperature sensors, strain sensors, biosensors, environmental sensors, and wearable sensors, etc. Additive manufacturing technologies can fabricate sensors and microfluidic devices with less labor. This paper focuses on various sensors developed by additive manufacturing processes, and their practical application for the particular purpose is reviewed.


Author(s):  
Krishna Kishore Mugada ◽  
Aravindan Sivanandam ◽  
Ravi Kumar Digavalli

Wire + Arc additive manufacturing (WAAM) processes have become popular because of their proven capabilities to produce large metallic components with high deposition rates (promoted by arc-based processes) compared to conventional additive manufacturing processes such as powder bed fusion, binder jetting, direct energy deposition, etc. The applications of WAAM processes were constantly increasing in the manufacturing sector, which necessitates an understanding of the process capability to various metals. This chapter outlines the significant outcomes of the WAAM process for most of the engineering metals in terms of microstructure and mechanical properties. Discussion on various defects associated with the processed components is also presented. Potential application of WAAM for different metals such as aluminum and its alloys, titanium, and steels was discussed. The research indicates that the components manufactured by the WAAM process have significant microstructural changes and improved mechanical properties.


Author(s):  
Ruth Jill Urbanic ◽  
Bob Hedrick

Additive manufacturing layer-based solution approaches have been applied for several technologies and systems. Process planning solutions are being developed for planar applications, but rotary applications can benefit from an additive manufacturing ‘rotary layering’ strategy as well. There are systems that have been developed to coat pipes and other rotationally symmetric components, and there are multi-axis applications that would require rotary-like tool paths. Developing and exploring additive rotary tool path applications is the focus of this research. These initial solutions will be applicable for direct energy deposition and thermal spraying models. AM rotary proof of concept tool paths are developed using a commercial CAD/CAM software, and a software development kit (SDK). Selected case studies are presented, with varying levels of geometric complexity.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 689 ◽  
Author(s):  
Thomas Childerhouse ◽  
Martin Jackson

Near net shape (NNS) manufacturing offers an alternative to conventional processes for the manufacture of titanium alloy components. Compared to the conventional routes, which typically require extensive material removal of forged billets, NNS methods offer more efficient material usage and can significantly reduce machining requirements. Furthermore, NNS manufacturing processes offer benefits such as greater flexibility and reduced costs compared to conventional methods. Processes such as metal additive manufacturing (AM) have started to be adopted in niche applications, most notably for the manufacture of medical implants, where many conventionally forged components have been replaced by those manufactured by AM processes. However, for more widespread adoption of these emerging processes, an improvement in the confidence in the techniques by manufacturers is necessary. This requires addressing challenges such as the limited mechanical properties of parts in their as-built condition compared to wrought products and the post-process machining requirements of components manufactured by these routes. In this review, processes which use a powder or wire feedstock are evaluated to assess their capabilities for the manufacture of titanium alloy components. These processes include powder bed fusion and direct energy deposition metal additive processes as well as hybrid routes, which combine powder metallurgy with thermomechanical post-processing.


2018 ◽  
Vol 941 ◽  
pp. 1088-1094 ◽  
Author(s):  
Ajit Pal Singh ◽  
Fei Yang ◽  
Rob Torrens ◽  
Brian Gabbitas ◽  
Leandro Bolzoni

Blended Elemental Powder Metallurgy is a very attractive method for producing titanium alloys, which can be formed near net shape and have freedom in composition selection. However applications are still limited due to affordability. In this paper, we will discuss a possible cost-effective route, combining vacuum sintering, extrusion, and heat treatment, to produce titanium alloys with similar or better mechanical properties than that of ingot metallurgy titanium alloys. The as-processed material with an oxygen content of 0.34 ± 0.005 wt.% was subjected to heat treatments such as β annealing plus ageing and α+β annealing without ageing to attain a typical lamellar/Widmanstätten/basketweave type structure with a large variation in terms of the microstructural features such as grain size, colony size, inter-lamellar spacing, thickness of grain boundary α, and size of individual lamellar. From mechanical property data attained here, it was apparent that annealing in high α-β region gave a much better combination of mechanical properties: yield strength (860-902 MPa), ultimate tensile strength (1060-1084 MPa) and ductility/plastic strain (11.5-13.6%). The hardness values of heat treated material varied between 346-376 Vickers hardness (36.8-44.5 Rockwell hardness).


2021 ◽  
Vol 11 (10) ◽  
pp. 4694
Author(s):  
Christian Wacker ◽  
Markus Köhler ◽  
Martin David ◽  
Franziska Aschersleben ◽  
Felix Gabriel ◽  
...  

Wire arc additive manufacturing (WAAM) is a direct energy deposition (DED) process with high deposition rates, but deformation and distortion can occur due to the high energy input and resulting strains. Despite great efforts, the prediction of distortion and resulting geometry in additive manufacturing processes using WAAM remains challenging. In this work, an artificial neural network (ANN) is established to predict welding distortion and geometric accuracy for multilayer WAAM structures. For demonstration purposes, the ANN creation process is presented on a smaller scale for multilayer beads on plate welds on a thin substrate sheet. Multiple concepts for the creation of ANNs and the handling of outliers are developed, implemented, and compared. Good results have been achieved by applying an enhanced ANN using deformation and geometry from the previously deposited layer. With further adaptions to this method, a prediction of additive welded structures, geometries, and shapes in defined segments is conceivable, which would enable a multitude of applications for ANNs in the WAAM-Process, especially for applications closer to industrial use cases. It would be feasible to use them as preparatory measures for multi-segmented structures as well as an application during the welding process to continuously adapt parameters for a higher resulting component quality.


Sign in / Sign up

Export Citation Format

Share Document