Cost-Effective Production of High-Property Titanium Alloy from Powder

2018 ◽  
Vol 941 ◽  
pp. 1088-1094 ◽  
Author(s):  
Ajit Pal Singh ◽  
Fei Yang ◽  
Rob Torrens ◽  
Brian Gabbitas ◽  
Leandro Bolzoni

Blended Elemental Powder Metallurgy is a very attractive method for producing titanium alloys, which can be formed near net shape and have freedom in composition selection. However applications are still limited due to affordability. In this paper, we will discuss a possible cost-effective route, combining vacuum sintering, extrusion, and heat treatment, to produce titanium alloys with similar or better mechanical properties than that of ingot metallurgy titanium alloys. The as-processed material with an oxygen content of 0.34 ± 0.005 wt.% was subjected to heat treatments such as β annealing plus ageing and α+β annealing without ageing to attain a typical lamellar/Widmanstätten/basketweave type structure with a large variation in terms of the microstructural features such as grain size, colony size, inter-lamellar spacing, thickness of grain boundary α, and size of individual lamellar. From mechanical property data attained here, it was apparent that annealing in high α-β region gave a much better combination of mechanical properties: yield strength (860-902 MPa), ultimate tensile strength (1060-1084 MPa) and ductility/plastic strain (11.5-13.6%). The hardness values of heat treated material varied between 346-376 Vickers hardness (36.8-44.5 Rockwell hardness).

2018 ◽  
Vol 770 ◽  
pp. 39-44 ◽  
Author(s):  
Ming Tu Jia ◽  
Clément Blanchard ◽  
Leandro Bolzoni

Blended elemental powder metallurgy is a cost effective approach to produce near net shape titanium alloy parts; however, the residual pores remaining in sintered parts are detrimental to the mechanical properties. In this study, elemental powders (Ti, Al and Fe) were used to produce the Ti-5Al-2Fe alloy by a powder forging process, involving cold compaction, vacuum sintering, forging and heat treatment. The residual pores of the sintered parts were removed completely by forging at the temperature of 1250oC. The effect of solution and aging and mill annealing heat treatments on the mechanical properties of the forged Ti-5Al-2Fe parts were studied. It is found that the ductility of the forged Ti-5Al-2Fe parts is improved significantly by both solution and aging treatment and mill annealing, without decreasing their ultimate tensile strength, which sits around 1000 MPa. The enhancement of the mechanical behaviour is justified via understanding the evolution of the residual porosity and of the microstructural features of the materials.


2009 ◽  
Vol 618-619 ◽  
pp. 505-508 ◽  
Author(s):  
Mahnaz Z. Jahedi ◽  
Saden H. Zahiri ◽  
Stefan Gulizia ◽  
Bill Tiganis ◽  
C. Tang ◽  
...  

Titanium has excellent properties as an engineering material such as light weight, high strength and high resistance to corrosion and fracture. However, the high cost associated with the materials and current process technologies is not conducive to higher-volume production for consumer industry. It appears near net shape manufacturing has to be used to manufacture titanium and titanium alloys parts. Investigators are exploring several near net shape technologies. However, most of these technologies involve melting and solidification. Each new layer starts out molten, solidifies, and must eventually cool to room temperature. Oxygen sensitive material such as titanium needs to be processed under vacuum. There is a great need for revolutionary coating and direct Manufacturing technology to extend the application of titanium and titanium alloys from top end, aerospace and biomedical to lower end consumer use. It appears Cold Spray Technology can deliver a suitable and cost effective coating and direct manufacturing solution for titanium industry. CSIRO Light Metals Flagship has pioneered in developing direct manufacturing technologies to fabricate titanium parts using Cold Spray. Mechanical properties of Cold Spray titanium in as sprayed and heat treated conditions are presented and compared with wrought titanium. Some of technologies such as Cold Spray for direct manufacturing of seamless titanium pipes are discussed.


2014 ◽  
Vol 1019 ◽  
pp. 19-25 ◽  
Author(s):  
F.H. Froes ◽  
B. Dutta

High cost is the major reason that there is not more wide-spread use of titanium alloys. Powder Metallurgy (P/M) represents one cost effective approach to fabrication of titanium components and Additive Manufacturing (AM) is an emerging attractive PM Technique . In this paper AM is discussed with the emphasis on the “work horse” titanium alloy Ti-6Al-4V. The various approaches to AM are presented and discussed, followed by some examples of components produced by AM. The microstructures and mechanical properties of Ti-6Al-4V produced by AM are listed and shown to compare very well with cast and wrought product. Finally, the economic advantages to be gained using the AM technique compared to conventionally processed material are presented. Key words: Additive Manufacturing (AM), 3D Printing, CAD, CAM, Laser, Electron beam, near net shape, remanufacturing, Powder Bed Fusion (PBF), Direct Energy Deposition (DED)


2007 ◽  
Vol 29-30 ◽  
pp. 87-90 ◽  
Author(s):  
Hyae Kyung Yi ◽  
Jung Hwan Lee ◽  
Young Seon Lee ◽  
Young Hoon Moon

Warm hydroformability and mechanical properties of pre- and post- heat treated Al6061 tubes were investigated in this study. For the investigation, as-extruded, fully annealed and T6- treated Al 6061 seamless tubes were prepared. To evaluate the hydroformability, uni-axial tensile test and free bulge test were performed at room temperature and 200ÓC. Also mechanical properties of hydroformed part at various pre- and post-heat treatments were evaluated by tensile test. The tensile test specimens were obtained from hexagonal shaped tube hydroformed at 200ÓC forming temperature. As a result, hydroformability of fully annealed tube is 25% higher than that of extruded tube. The tensile strength and elongation were more than 330MPa and 12%, respectively, when hydroformed part was T6 treated after warm hydroforming. However, hydroformed part using T6 pre treated tube represents low elongation, 8%. Therefore, the T6 treatment after hydroforming for as-extruded tube is proved to be the most cost-effective among various processing conditions.


2014 ◽  
Vol 1019 ◽  
pp. 3-10 ◽  
Author(s):  
Brian Gabbitas ◽  
Fei Yang ◽  
Stella Raynova ◽  
Ming Tu Jia

Both open die and closed die powder compact forging can be used for the consolidation of Ti and pre-alloyed Ti 6Al 4V powders produced by a hydride-dehydride (HDH) process. The approach used is initial cold or warm compaction into cylindrical shapes, or into a specific pre-form shape appropriate for achieving a particular final forged shape. The economic benefit is near net-shape processing with minimum machining required after forging. Manufacturing costs are also minimised by forging a compact, with a sufficiently high enough density, in air, without a protective atmosphere. The challenge, from a manufacturing point of view, is the operation of a manufacturing route which gives rapid and qualified compaction to meet production demands and batch sintering to achieve a high enough density prior to final forging to shape. In addition to this the final product has to have the right level of mechanical properties. This paper reviews some key findings from powder compact production, through to sintering and forging. These will be presented in terms of alpha-beta phase distribution in the microstructure, the degree of porosity, heat treatment and their effects on mechanical properties.


2014 ◽  
Vol 1042 ◽  
pp. 38-43 ◽  
Author(s):  
Guo Jian Cao ◽  
Wan Jiao Xu ◽  
Yi Cheng Feng ◽  
Wan Yong Tang

Gradient-porous Titanium alloys can be applied to manufacturing implants for bone replacement, due to their good biological and mechanical compatibility. In this work, the feasibility of fabricating gradient-porous Titanium by centrifugal deposition and vacuum sintering was investigated. The apparent porosity of the gradient-porous Ti examined by Archimedes method is 56%. And the open pores occupy 89%. The pore structure was observed by an optical microscope. And its porosities at different radius were calculated by image software based on optical microscopic images. In addition, a nanoindentation was employed to characterize the mechanical properties at different radius. The results showed that the porosity of the sample increased with increasing of radius. Besides, both the elastic modulus and hardness changed alone radius with a same trend.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3824 ◽  
Author(s):  
Singh ◽  
Yang ◽  
Torrens ◽  
Gabbitas

The mechanical properties of titanium and titanium alloys are very sensitive to processing, microstructure, and impurity levels. In this paper, a blended powder mixture of Ti-6Al-4V alloy was consolidated by powder compact extrusion that involved warm compaction, vacuum sintering, and hot extrusion. The as-processed material with an oxygen content of 0.34 wt.% was subjected to various annealing treatments. The impact toughness of heat-treated material was determined using Charpy V-notch impact testing at room temperature. An emphasis was placed on establishing a relationship among fracture behaviour, microstructure, and the resulting properties of tested material. From the results, it is apparent that the highest impact toughness value of 19.3 J was achieved after α/β annealing and is comparable with typical values given in the literature for wrought Ti-6Al-4V. In terms of fracture behaviour, it is quite apparent that the crack propagation behaviour of powder-produced material is rather complex compared with the limited amount of data reported for ingot counterparts.


Author(s):  
Abdul Rauf Rauf Jamali ◽  
Waseem Khan ◽  
Ali Dad Chandio ◽  
Zubai Anwer ◽  
Muhammad Hayat Jokhio

From last epoch till to date, AISI 4340 and AISI 4140 have been widely used in different engineering applications. These applications include bolt, screws, gears, drive shafts, crane shaft and piston rods for engines due to its upright mechanical properties, cost-effective and easily available in market. In present work, deep cryogenic treatment effect on the mechanical properties of AISI 4340 and AISI 4140 have been studied. Present work was carried out at laboratory scale and can be extended for mass production. Our work is simple, straight forward safe and economical. In our work, samples were heat treated in simple muffle furnace and followed by cryogenic treatment in liquid nitrogen. Before cryogenic treatment, all samples were normalized at 860°C to obtain homogenized micro structure. Samples were also compared conventionally heat treatment with quenched in oil quenchant. Experimental results showed that after cryogenic treatment with tempering treatment, one could easily increase the tensile strength, impact toughness and hardness. Advanced optical microscopy (IMM 901) and SEM (Scanning Electron Microscopy), FIT Quanta 200 methods have also been deployed to reveal and interpret the internal structure of samples. It was found from micro structure that cryogenic treated sample increases the impact strength, hardness and tensile strength as compared conventional heat treated quenching approaches.


2020 ◽  
Vol 184 ◽  
pp. 01045
Author(s):  
Pradeep Kumar Manne ◽  
Nutenki Shravan Kumar ◽  
Tanya Buddi ◽  
A. Anitha Lakshmi ◽  
Ram Subbiah

Powder metallurgy (PM) is a technique in which materials or components are made from metal powders. In this paper, the overview about titanium alloys and their advantages over engineering applications has been discussed. They are very strong and also possess great mechanical properties and incredible corrosion and wear resistance, and also capable of performing operations at elevated temperatures approximately up to 600ºC. This paper provides various compositions of titanium alloys and various powder metallurgy techniques used for sintering powders of various compositions and their applications. The properties of titanium compounds show the manufacturing of cost effective component. As a result of their fantastic mechanical, physical and organic execution they are finding consistently expanding application in biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document