Investigation on Microstructure and Wear Resistance of the New CrWMoV High-Alloy Wear Resistant Cast Iron

2014 ◽  
Vol 1061-1062 ◽  
pp. 670-673
Author(s):  
Zheng Ting Wang ◽  
Hong Ming Gao

This paper mainly introduces the new CrWMoV high-alloy wear resistant cast iron prepared by the composition design, the composition proportion and the melting and pouring, and analyses its microstructure and wear resistance. Microstructures and phases of the new CrWMoV high-alloy wear resistant cast iron were analyzed by scanning electron microscopy, energy dispersive spectrometer and X-ray diffract meter. Furthermore, the Rockwell hardness, impact toughness and wear resistance of the material were also studied. The result show that the composition of the new CrWMoV high-alloy wear resistant cast iron is mainly (V, W) C particles which is synthesized in-situ and evenly distributed in the composite, as well as a small amount of (Cr, Fe) 7C3 phase and Fe-Cr phase. The average Rockwell hardness of the composite is about 64.5 HRC, the average impact toughness is 9.85 J/cm2, and the relative wear ability of the composite is about 2 times higher than the Cr15Mo2Cu which shows good wear resistance.

Alloy Digest ◽  
2012 ◽  
Vol 61 (2) ◽  

Abstract RUUKKI RAEX 300 (typical yield strength 900 MPa) is part of the Raex family of high-strength and wear-resistant steels with favorable hardness and impact toughness to extend life and decrease wear in structural components. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on wear resistance as well as forming, machining, and joining. Filing Code: SA-643. Producer or source: Rautaruukki Corporation.


2015 ◽  
Vol 761 ◽  
pp. 298-302
Author(s):  
N.I.S. Hussein ◽  
S.R. Kamarul ◽  
Mohamad Nizam Ayof

The wear on the cutting edge of the gray cast iron trim cutter die will result in the burr formation on the trimmed blanks. This will increase the rejection rate, and hence, decreasing the efficiency of the production. By applying a wear resistant material, the wear rate on the cutting edge of the die is believed to be minimized. In this paper, the methodology of the experiment on the cladding process using gas metal arc as the heat source, and NiCrBSi-WC as the filler material on gray cast iron substrate is presented. NiCrBSi-WC is chosen as the filler material because of its outstanding wear resistance characteristic. Furthermore, it is a popular choice as a wear resistant material in various types of industry. The purpose of the planned experiment is to maximize the wear resistance of the trim cutting die. It is also a fraction of the case study based on the parts production in the automotive industry in Malaysia.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 45 ◽  
Author(s):  
Erding Wen ◽  
Renbo Song ◽  
Wenming Xiong

The microstructure and wear behavior of a 500 Brinell hardness (HB) grade wear-resistant steel tempered at different temperatures were investigated in this study. The tempering microstructures and wear surface morphologies were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The relationship between mechanical properties and wear resistance was analyzed. The microstructure of the steel mainly consisted of tempered martensite and ferrite. Tempered troosite was obtained when the tempering temperature was over 280 °C. The hardness decreased constantly with the increase of tempering temperature. The same hardness was obtained when tempered at 260 °C and 300 °C, due to the interaction of Fe3C carbides and dislocations. The impact toughness increased first and reached a peak value when tempered at 260 °C. As the tempering temperature was over 260 °C, carbide precipitation would occur along the grain boundaries, which led to temper embrittlement. The best wear resistance was obtained when tempered at 200 °C. At the initiation of the wear test, surface hardness was considered to be the dominant influencing factor on wear resistance. The effect of surface hardness improvement on wear resistance was far greater than the impact toughness. With the wear time extending, the crushed quartz sand particles and the cut-down burs would be new abrasive particles which would cause further wear. Otherwise, the increasing contact temperature would soften the matrix and the adhesive wear turned out to be the dominant wear mechanism, which would result in severe wear.


2011 ◽  
Vol 284-286 ◽  
pp. 273-276
Author(s):  
Li Sheng Zhong ◽  
Yun Hua Xu ◽  
Xin Cheng Liu ◽  
Fang Xia Ye ◽  
Jing Lai Tian ◽  
...  

The method of infiltration casting plus heat treatment process employing chromium wires and cast iron applied to in-situ synthesized (Fe,Cr)7C3 particulates bundle reinforced iron matrix composites. The phase analysis, microstructure, microhardness and wear-resistance of composite were observed and measured. The results show that it is possible to fabricate (Fe,Cr)7C3 particulates bundle reinforced iron matrix composite produced by this technology, and a special structure which called particulates bundle was fabricated. (Fe,Cr)7C3 particulates bundle were distributed in the forms of granular, lath-shaped and hexagon-shaped in the particulates bundle. The macrohardness of particulates bundle was 52 HRC, and the relative wear resistance of the composites is 2.3—23 times higher than that of the cast iron.


2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850028
Author(s):  
BINFENG LU ◽  
YUNXIA CHEN ◽  
MENGJIA XU

(Cr, Fe)7C3/[Formula: see text]-Fe composite layer has been in situ synthesized on a low carbon steel surface by vacuum electron beam VEB irradiation. The synthesized samples were then subdued to different heat treatments to improve their impaired impact toughness. The microstructure, impact toughness and wear resistance of the heat-treated samples were studied by means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), microhardness tester, impact test machine and tribological tester. After heat treatment, the primary and eutectic carbides remained in their original shape and size, and a large number of secondary carbides precipitated in the iron matrix. Since the Widmanstatten ferrite in the heat affected zone (HAZ) transformed to fine ferrite completely, the impact toughness of the heat-treated samples increased significantly. The microhardness of the heat-treated samples decreased slightly due to the decreased chromium content in the iron matrix. The wear resistance of 1000[Formula: see text]C and 900[Formula: see text]C heat-treated samples was almost same with the as-synthesized sample. While the wear resistance of the 800[Formula: see text]C heat-treated one decreased slightly because part of the austenite matrix had transformed to ferrite matrix, which reduced the bonding of carbides particulates.


2021 ◽  
Vol 11 (21) ◽  
pp. 10236
Author(s):  
Lingfeng Xu ◽  
Zhanhua Song ◽  
Mingxiang Li ◽  
Fade Li ◽  
Jing Guo ◽  
...  

The working environment of agricultural cutting tools is poor, and the operational quality and efficiency are reduced after they become blunt. This study aimed to develop a high wear-resistant agriculture knife with a long life. A Ni–WC alloy, wear-resistant layer was prepared using laser cladding technology on one side of the cutting edge of a 65 Mn silage knife. A self-grinding edge was formed when the cladded knife was used, which improved the cutting quality and service life of the knife. The microstructure, phase, composition, and hardness distribution of the cladding layer were detected and analyzed. The impact toughness and wear resistance of the laser-cladded samples were analyzed, and the cladded knife was tested in the field. The results show that a cladded layer with a dense microstructure formed metallurgical bonds with the substrate. The microhardness was uniform across the cladded layer, and the average hardness of the micro Vickers was approximately 1000 HV(0.2), which was approximately three times the hardness of the substrate. The impact toughness and wear resistance of the coated knife were obviously higher than those of uncoated knives. The field tests showed that compared with a conventional 65 Mn knife, the self-grinding knife with laser cladding could maintain its sharp cutting shape after operation for 76 h, which greatly extended the service life of the knife. This study improved the service life of an agricultural cutting tool, which enhanced the cutting performance and efficiency at the same time.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 467 ◽  
Author(s):  
Weian Zong ◽  
Song Zhang ◽  
Chunhua Zhang ◽  
Chenliang Wu ◽  
Jingbo Zhang ◽  
...  

To obtain the wear-resistant camshaft with surface rigidity and core toughness and improve the service life of camshaft, wear-resistant Fe-based alloy gradient material was prepared by laser melt deposition. The traditional camshaft was forged by 12CrNi2V. In this paper, four types of wear-resistant Fe-based powders were designed by introducing various content of Cr3C2 and V-rich Fe-based alloy (FeV50) into stainless steel powder. The results showed that the gradient materials formed a satisfactory metallurgical bond. The composition of the phases was mainly composed of α-Fe, Cr23C6, and V2C phases. The increasing of Cr3C2 and FeV50 led to transform V2C into the V8C7. The microstructures were mainly cellular dendrite and intergranular structure. Due to the addition of Cr3C2 and FeV50, the average microhardness and wear resistance of gradient materials were significantly better than that of 12CrNi2V. The sample with 8% V had the highest microhardness of 853 ± 18 HV, which was 2.6 times higher than that of 12CrNi2V. The sample with 6% V had the best wear resistance, which was 21 times greater than that of 12CrNi2V.


2016 ◽  
Vol 16 (3) ◽  
pp. 77-82 ◽  
Author(s):  
E. Olejnik ◽  
Ł. Szymański ◽  
P. Kurtyka ◽  
T. Tokarski ◽  
W. Maziarz ◽  
...  

Abstract Refinement is one of the most energy consuming technological process, aimed at obtaining mineral raw materials of the proper grain size. Cast structural elements such as jaws or hammers in crushing machines operate under conditions of an intensive wear. The data indicate that 80 % of failures of machines and devices is caused by wearing of rubbing surfaces. This problem became the subject of several scientific and industrial investigations carried out in the whole world in order to produce materials ultra- wear resistant. Methods allowing to obtain wear resistant composite castings are discussed in the hereby paper. Within the performed research microstructures of the produced composite zones were presented and the comparative analysis with regard to mechanical and functional properties of local composite reinforcements in relation to the commercial alloys of increased wear resistance was performed. The results show almost twenty five times increase in wear resistance compared to manganese cast steel containing 18 % Mn.


Sign in / Sign up

Export Citation Format

Share Document