Thermal Effect of the Spray Drying Process on the Quality of Tongkat Ali Extract

2016 ◽  
Vol 1133 ◽  
pp. 612-616
Author(s):  
Harun Noor Hafiza ◽  
Abdul Aziz Azila ◽  
Wan Zamri Wan Mastura ◽  
Yaakob Harisun ◽  
Aziz Ramlan

The effect of heat on the quality of spray dried Tongkat Ali extract was investigated at three different air inlet temperatures (100°C, 180°C and 2200C). Response surface methodology employing the Box-Behnken Design was employed to hunt for the optimum operating conditions at these temperatures. Good retentions of eurycomanone, total polysaccharides and glycosaponins were exhibited during the spray drying process. However, protein was found to be susceptible to thermal degradation during the spray drying process. Use of high air inlet temperatures (i.e. 1800C and 2200C) in spray drying led to greater process yield, lower moisture contents, produced non-sticky particles, and resulted in good powder size distribution of Tongkat Ali extract compared to spray drying at 1000C.

Revista Fitos ◽  
2020 ◽  
Vol 14 (4) ◽  
pp. 469-475
Author(s):  
Lucas Oliveira Rodrigues ◽  
Rachel Andrade de Faria ◽  
Marcos Martins Gouvêa ◽  
Carlos Augusto de Freitas Peregrino ◽  
Elizabeth Valverde Macedo ◽  
...  

Uncaria tomentosa (Willd. ex Schult.) DC. (Cat's claw) is a plant member of the Rubiaceae family, from the Amazon region, and used in traditional medicine as raw material for phytomedicines indicated for arthritis and osteoarthritis. This study aimed to evaluate the spray drying process parameters on the properties of different extracts obtained from Uncaria tomentosa. A reduced 24-1 multifactorial design was applied to evaluate the importance of the equipment variables (pump speed, spray nozzle diameter, air inlet temperature, and atomization airflow rate) in the process. Maltodextrin and acacia gum were used as carriers in a 1:1 (m/m) ratio, considering the solid residue content of the liquid plant extract. Process yield, moisture, and hygroscopicity were evaluated as dependent variables. Higher atomization airflow rate led to higher process yield for powdered dried extracts with maltodextrin. Higher temperature led to lower moisture contents regarding powdered dried extracts with acacia gum. No variable, for any carrier, was considered significant for hygroscopicity. The best spray drying configuration for the desired characteristics (i.e. lower hygroscopicity and moisture) used the larger spray nozzle with a diameter of 1.2 mm and the higher temperature of 150 °C, with both carriers.


2020 ◽  
Vol 849 ◽  
pp. 8-13
Author(s):  
Rudi Firyanto ◽  
Heru Susanto ◽  
Retno S.L. Ambarwati ◽  
Suherman ◽  
Widayat

Energy has an important role in the survival of the tea processing industry. The costs for energy generation and application have a large contribution to the total cost of the tea processing. The use of fuel oil and electricity, especially in the drying process is the biggest energy user stage. In line with the development of Indonesia's tea processing industry, it is felt necessary to immediately utilize the source of biomass in tea plantations through the application of gasification technology. The development of tea processing in the future should pay more attention to aspects of energy and the environment as the main discussion. This study aims to examine the development of gasification technology in converting biomass as thermal energy to meet gas quality in the tea drying process. The hypothesis is that through the gasification biomass technology of tea plantations, will produce gas as thermal energy that meets the quality of the tea drying process. The target to be achieved is in the form of laboratory technical data for the design, operation of the process, scale-up and evaluation of the performance of the gasifier which includes flame propagation, simulation of combustion and optimum operating conditions with temperature process variables, air flow rate and gas products, tea biomass capacity, and the length of the gasification process.


2021 ◽  
Vol 10 (1) ◽  
pp. 36-42
Author(s):  
Endang Su Hendi ◽  
Rusdi Rusdi ◽  
Bagja Nur Alam ◽  
Siti Nurbaeti

Cooking oil that is used repeatedly at high temperatures will reduce the quality of cooking oil. This will trigger the hydrolysis and oxidation processes that will change the characteristics of the oil, such as an increase in free fatty acid levels and peroxide numbers. Purification of used cooking oil can be carried out physically and chemically. The physical purification of oil is carried out by using adsorbents, while chemically purification process is carried out with an alkaline solution. Physically, natural materials such as zeolite can be used, where zeolite is a natural rock or mineral which chemically has a large surface area to be used in the adsorption process. Chemically with alkaline solution you can use sodium hydroxide (NaOH). In this study, used cooking oil is purified by three stages of the process, namely despicing, neutralization and bleaching to comply with the SNI quality standards. The purpose of this study was to determine the optimum operating conditions for the purification of used cooking oil in accordance with the quality standards for cooking oil. based on the results obtained by adding a NaOH concentration of 19% in the neutralization process and a zeolite concentration of 90% can reduce the acid number value of 2.4 mg NaOH/gr, the peroxide number is 7 mekO2/kg, the color degradation of used cooking oil is 51.83%.


Revista Vitae ◽  
2018 ◽  
Vol 25 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Alejandra MARULANDA ◽  
◽  
Marilza RUIZ-RUIZ ◽  
Misael CORTES-RODRÍGUEZ ◽  
◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3873 ◽  
Author(s):  
Nameer Khairullah Mohammed ◽  
Chin Ping Tan ◽  
Yazid Abd Manap ◽  
Belal J. Muhialdin ◽  
Anis Shobirin Meor Hussin

The application of the spray drying technique in the food industry for the production of a broad range of ingredients has become highly desirable compared to other drying techniques. Recently, the spray drying technique has been applied extensively for the production of functional foods, pharmaceuticals and nutraceuticals. Encapsulation using spray drying is highly preferred due to economic advantages compared to other encapsulation methods. Encapsulation of oils using the spray drying technique is carried out in order to enhance the handling properties of the products and to improve oxidation stability by protecting the bioactive compounds. Encapsulation of oils involves several parameters—including inlet and outlet temperatures, total solids, and the type of wall materials—that significantly affect the quality of final product. Therefore, this review highlights the application and optimization of the spray drying process for the encapsulation of oils used as food ingredients.


2021 ◽  
Vol 27 (1) ◽  
pp. 200553-0
Author(s):  
Chandrika K.C ◽  
T. Niranjana Prabhu ◽  
R. R. Siva Kiran ◽  
R. Hari Krishna

Most of the photocatalytic studies for pollutant degradation are based on optimizing a single parameter that results in a non-linear relationship between the overall parameters and the photo-degradation reactions. To address this critical problem, herein, we report the use of Response Surface Methodology based on the Box-Behnken Design (BBD) for modeling the photocatalysis degradation of Malachite Green (MG) dye using nano TiO2 as photocatalyst. The catalyst characterizations are carried out using XRD, SEM, and TEM, indicating that the TiO2 prepared by sol-gel synthesis possesses Anatase phase with particles in the nano regime and porous surface morphology. The optimum operating conditions for degradation of MG was identified by the interactive effects of variable factors such as initial dye concentration 10-30 ppm (x1), catalyst dosage 1-3 mg (x2), contact time 20-60 min (x3) using the Box-Behnken method. Furthermore, the degradation reactions are also evaluated by Artificial Neural Networks (ANN). Their predicted results have been validated by the experimental studies and found to be acceptable. Their optimal results to achieve 90% degradation efficiency at TiO2 nanoparticle dosage (3 mg), reaction time (60 min), and initial dye concentration (20 ppm) have been validated by the experimental studies and found to be acceptable.


2013 ◽  
Vol 3 (1) ◽  
pp. 61 ◽  
Author(s):  
Paola Hernández-Carranza ◽  
Aurelio López-Malo ◽  
Maria-Teresa Jiménez-Munguía

<p>Survival and quality efficiency of <em>Lactobacillus casei </em>microencapsulated by spray drying using different vegetable extracts (asparagus, artichoke, orange or grapefruit peel) were evaluated. Aqueous suspensions of the vegetable extracts with or without maltodextrin (adjusting to 25% w/w) were prepared for the microencapsulation of <em>L. casei</em>. The evaluated spray drying conditions were at a fixed air inlet temperature (Tin) of 145 °C and varying the aqueous suspensions flux (Q) of 10 or 15 g/min. Survival of <em>L. casei</em> was evaluated after the spray drying process and after 60 days of storage at 25 °C. The quality efficiency of the microencapsulated <em>L. casei</em> was evaluated by measuring in the product, physicochemical properties (moisture content, a<sub>w</sub>), determining moisture gain and modeling adsorption isotherms, besides analyzing micrographs. Results demonstrated that moisture content of the different spray drying powders was less than 2% wb and less than 0.30 of a<sub>w</sub>. It was evidently that the use of maltodextrin reduced 50% the powders moisture gain (hygroscopicity) therefore reducing stickiness problems during storage. The Scanning Electron Microscopy (SEM) confirmed individual particles formation with a homogeneous coat when using vegetable extracts+maltodextrin and hence better powder quality than without it. The microbial reduction of <em>L. casei</em> after the spray drying process was of one log cycle and significantly different (p &lt; 0.05) with the presence of maltodextrin when using orange or grapefruit peel. A microbial population over 10<sup>7</sup> cfu/g of <em>L. casei</em> microencapsulated was maintained after 60 days of storage which guarantees its use to develop functional food.</p>


2015 ◽  
Vol 75 (6) ◽  
Author(s):  
Aliyu Bello A. ◽  
Arshad Ahmad ◽  
Adnan Ripin

Pineapple juice is one of the known natural sources of bromelain, a bioactive compound beneficial to health. The dried powder has potential commercial value and is a convenient source of the juice drink. The quality of spray dried pineapple juice is dependent on the powder moisture content. Spray dried pineapple powders with low moisture contents were produced in a lab-scale spray dryer in this study.  Powder production of 25% of total solids were obtained by use of DE6 maltodextrin to solids ratio of 0.41:0.59. A heat and mass transfer model of the spray drying process was implemented in Matlab and solved to determine its predictive utility. The simulation results showed agreement with experimental data at high inlet air temperatures but widely diverged at other air temperatures. The error size in predicted product moisture varied from 73% at 165 oC to almost zero at 185 oC while that for the predicted exit air temperatures varied from about 38% to zero over the same temperature range.  Accuracy can be improved if transient heat effects, and sub models for the feed drying are included in the model.


Author(s):  
Olivia Rodriguez ◽  
Daniela Aguilar ◽  
Guadalupe Luna ◽  
Gregorio Zarate ◽  
Licet Bello

Anthocyanins pulp and peel passionfruit extracted by leaching using water as a solvent where the operating conditions of spray drying were evaluated for a microencapsulated. The variables were temperature input (180,200 and 220 ° C), MD (6,8y10%), AP (1,3y5%) and outlet temperature 80 ° C, was achieved noted that during the drying process moisture decreased to 85% due to this high in MD and AP, this also increases the content of ST. Color significantly was not affected by spray drying.. Keywords: Passionfruit, abstract, encapsulants, spray microencapsulatio 


2019 ◽  
Vol 3 (2) ◽  
pp. 62
Author(s):  
Ayu Ratna Permanasari ◽  
Saripudin Saripudin ◽  
Tri Reksa Saputra ◽  
Muhammad Fahmi Hidayatulloh ◽  
Nizar Fathurohman

Serbuk lidah buaya merupakan salah satu produk olahan lidah buaya yang banyak digunakan industri kosmetik sebagai bahan tambahan. Tujuan dari penelitian ini adalah untuk menentukan kondisi operasi dan konsentrasi zat aditif dengan variasi temperatur operasi (50oC, 60oC, dan 70oC) dan variasi konsentrasi maltodekstrin (6%, 7%, 8%, dan 9%) dalam pembuatan serbuk lidah buaya untuk mencapai kandungan antrakuinon terendah dan kandungan glukomanan tertinggi. Bahan yang digunakan adalah lidah buaya (Aloe Vera barbadensis.) yang dilakukan ­perlakuan awal sebelum pengeringan. Serbuk lidah buaya diukur kadar air, rendemen, kandungan antrakuinon dan kandungan glukomanan. Hasil menunjukan bahwa pada temperatur 60oC dan konsentrasi maltodekstrin 8%, serbuk lidah buaya memiliki kadar air 6,92%; rendemen 9% kandungan antrakuinon 20,8%; dan kandungan glukomanan 11,5% merupakan hasil terbaik.Aloe vera powder is one of processed aloe products are widely used cosmetic industry as an additive. The purpose of this study was to determine the optimum operating conditions and concentrations of additives by variations in the operating temperature (50, 60, and 70°C) and the variation of the concentration of maltodextrin (6, 7, 8, and 9%) in the manufacture of aloe vera powder to reach the lowest anthraquinone content and highest glucomannan content. Materials used are pre treated aloe vera (Aloe Vera barbadensis.) before drying process. Aloe vera powder measured water content, yield, anthraquinone content, and glucomannan content. Results showed that at temperature of 60° C and a concentration of 8%. Aloe vera powder has a water content of 6,92%; 9,00% yield; glucomannan content of 11,50%; and 27.30% anthraquinone content is the best results.


Sign in / Sign up

Export Citation Format

Share Document