Development of In-Process Monitoring System for Grinding Wheel Surface Temperature and Grinding State

2016 ◽  
Vol 1136 ◽  
pp. 624-629 ◽  
Author(s):  
Yoshiya Fukuhara ◽  
Shuhei Suzuki ◽  
Hiroyuki Sasahara

Grinding is a machining technology for plane surfaces and cylindrical surfaces in general. In comparison with cutting, higher accuracy can be provided and it is easier to manufacture high-hardness materials using grinding. However, the grinding wheel surface state changes during grinding, and grazing, clogging and shedding may then lead to problems. As these problems degrade the accuracy and productivity of grinding and the surface integrity of the work material, it is important to select an appropriate grinding condition to avoid the problems. In this study, a novel in-process system for monitoring the grinding wheel surface temperature and grinding state in real time, was proposed. A thermocouple is embedded in the grinding wheel in the developed system. The measured temperature data are transmitted to the external terminal equipment by a wireless transmitter built into the tool shank. Grinding wheel surface temperature was measured on four kinds of grinding wheels using the developed system. As a result, the grinding wheel surface temperature was measured successfully. In addition, it was clarified that the temperature transition largely depends on the grinding state.

2005 ◽  
Vol 291-292 ◽  
pp. 207-212 ◽  
Author(s):  
Hitoshi Ohmori ◽  
Shao Hui Yin ◽  
Wei Min Lin ◽  
Yoshihiro Uehara ◽  
Shinya MORITA ◽  
...  

Metal bonded diamond grinding wheels are widely used in the grinding process, especial in ELID grinding. However, truing is difficult owing to the high toughness of metal bond materials and high hardness of diamond abrasives. To realize high precision and high-efficiency truing, we propose a new micro-truing method consisting of electro-discharge truing and electrolysis-assisted mechanical truing in this paper. The process principle and fundamental experimental results are introduced, and the truing performance is discussed. Research results show that the proposed new method is effective for truing metal bonded diamond grinding wheels.


Author(s):  
Mark J. Jackson ◽  
Xun Chen

A new method for cleaning loaded grinding wheels is introduced by applying a CO2 laser pulse to the wheel surface. It is shown that effective cleaning can be achieved by the selection of adequate laser power flux and irradiation duration. Fusion and evaporation of clogged chips play an important role in the laser cleaning process and subsequent wear of the grinding wheel. It is suggested that high laser power irradiance of short duration is essential for effective wheel cleaning and reduced wear of the grinding wheel with specially developed bonds.


Author(s):  
Hamed Adibi ◽  
S. M. Rezaei ◽  
Ahmed A. D. Sarhan

Wheel loading entails chip accumulation in porosities between grains or welding to the top of cutting grains. It is considered one of the most prevalent problems in grinding Nickel-based super alloys. Identification of wheel loading is an important issue for optimizing the dressing intervals, but it can be a time consuming and an expensive process. A novel technique based on digital image processing to determine the loading areas over the surface of CBN vitrified grinding wheels using the toolbox of MATLAB is presented in this paper. The optical characteristics of the metal chips, the abrasive grains and wheel bond are considered. Experiments were performed to examine the repeatability of the proposed technique. The results were verified by the use of a scanning electron microscope. Based on the proposed technique, the effects of cutting parameters on the loaded area to wheel surface ratio in relation to grinding performance were studied empirically.


2016 ◽  
Vol 861 ◽  
pp. 14-19
Author(s):  
Pei Lum Tso ◽  
Weng Hong Lin

The high hardness of brittle materials always make it hard to machine with traditional grinding wheels. Conventionally a diamond grinding wheels was used to improve the poor processing capability. Usually the specific grinding energy had been used as an indicator of machinability. According to its definition, the specific grinding energy increases with the active contact area of the grinding wheel decreases. In other words, reducing the surface contact area of the grinding wheel can enhance the specific grinding energy effectively. Conditioning grooves on grinding wheels not only enhance the specific grinding energy, but also achieve the effect of reducing the heat dissipated during the grinding processes. With the proper selection parameters, the high cost of diamond grinding wheel may be replaced by less expensive conventional green carbon and aluminum oxide wheel. In this studies, the relationship between the surface topography of grinding wheels and the grinding capability of brittle materials was investigated. The results show that, the traditional grinding wheel dressing properly while the depth of cut less than 20μm with the rhombic pattern and the depth of cut more than 20μm with the groove-like pattern can grind the brittle materials as good as using diamond wheel.


Mechanik ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 907-914 ◽  
Author(s):  
Wojciech Kacalak ◽  
Filip Szafraniec ◽  
Dariusz Lipiński

This paper many different methods of generating the topography of the grinding wheel surface and the methodology for assessing the compatibility of models with the surface of real tools was presented. The methodology was indicated that certain features regarding the shape and position of the highest vertices are decisive for assessing the model’s conformity with the real surface of the grinding wheel. The significance of not only the form of the distribution of the vertices of the grains was emphasized, but also the significance of the fragment of the probability density function relating to the highest vertices and the autocorrelation of the vertex position as the most important feature, which often are overlooked in the models described in the literature.


2013 ◽  
Vol 313-314 ◽  
pp. 785-789 ◽  
Author(s):  
Lan Rong Cai ◽  
Wen Yu Ruan ◽  
Min Li

Preparation of superabrasive grinding wheels presents severe challenges due to the high hardness of abrasive grain. In this paper, electrical discharge dressing (EDD) technology with misted emulsion is applied to dressing bronze-bonded diamond wheels. Dressing experiments were carried out. The wheel profiles before and after dressing were measured using a Dektak 6M profilometer. The diamond wheel surface topographies before and after dressing were observed by three-dimension digital microscope. In addition, the performance of EDD’ed wheel was evaluated in practical grinding. It is shown that favorable surface topography can be obtained under suitable processing parameters and EDD misted emulsion with is feasible for metal-bonded diamond grinding wheel.


Author(s):  
Y. Jia ◽  
C. J. Wei ◽  
B. S. Kim ◽  
D. J. Hu ◽  
J. Ni

Diamond grinding wheels are important tools to carry out precise or ultra-precise grinding of difficult-to-machine materials; however, the difficulty of dressing diamond grinding wheels is a bottleneck problem in their wide application. The objective of this study is to identify the feasibility of near-dry electrical discharge dressing (EDD) of metal bonded diamond grinding wheels. Through design of experiment (DoE), sets of tests were carried out to select proper dielectric mist composition and electrode material, to quantify the dielectric mist composition, to choose the electrode shape and rotating speed, and to investigate the influence of electric discharge parameters on dressing performance. By applying optimized experimental parameters to near-dry EDD of metal bonded diamond grinding wheels, more diamond grits protruded out of the grinding wheel surface, and the worn diamond grinding wheel got sharpened.


2021 ◽  
Author(s):  
Amr Monier ◽  
Bing Guo ◽  
Qingliang Zhao ◽  
T.S. Mahmoud

Abstract In this work, the ability to reshape the grinding wheels with special patterns to produce advanced structured surfaces with several geometries is studied. Firstly, a mathematical model is built for the process relating geometries of the grinding wheel, geometries of wheel patterns, the produced structured surface with the grinding operating parameters. Then, different regular and irregular geometries are designed to be patterned over the wheel surface. Afterward, a simulation method to express the patterned wheels and the structured surface at different working conditions is developed. The effects of the pattern geometries on the obtained structured surfaces are investigated.


Sign in / Sign up

Export Citation Format

Share Document