CIMDW – A New Technique of Corona Ignited Micro-Discharge in Microwelding

2010 ◽  
Vol 126-128 ◽  
pp. 823-828
Author(s):  
Yunn Shiuan Liao ◽  
J.Y. Lin ◽  
Y.C. Chung ◽  
T.Y. Yang

Microtechnologies have been vigorously developed recently. Micro products have been widely used in many fields, for instance, the sensors in electronic, medical, optical and automotive applications. Thermocouples, which are used for temperature measurement, are usually fabricated by utilizing the joining technology of argon arc welding. However, the weld bead is so big that the conductivity and repeatability of temperature signals would be degraded. Laser welding may fix the weld bead problem, but the cost of equipment is relatively high. This study is about butt-welding thin brass wire of 250 m by mean of micro discharge. At first a low temperature plasma torch is formed to ignited arc, then discharge happens to complete the welding. Argon is added at ambient atmosphere during the welding process. The joined interfaces and heat affect zone of the welding is examined by optical and scanning electronic microscopies. Tensile and hardness tests as well as the microscopy examination indicate that this technology is feasible for thin brass welding. The features of this technology include low cost, easy to maneuver, and applicable in industry. This CIMDW technology offer choice for the applications of micro discharge in the field of microtechnology.

1985 ◽  
Vol 63 (6) ◽  
pp. 859-862 ◽  
Author(s):  
Charles E. Norman ◽  
Elias M. Absi ◽  
Raye E. Thomas

A new technique for producing silicon ribbons for solar-cell substrates is described. The process begins with inexpensive, 98% pure silicon that is crushed and acid leached to raise the purity to 99.9%. This powder is spread on a graphite plate and electron-beam annealed to form a flat, self-supporting "preribbon." After removal of the graphite and unmelted powder, the preribbon is given a second electron-beam scan that recrystallizes the silicon into a smooth polycrystalline ribbon. This zone melting further improves the purity to over 99.99%.Ribbons 0.4 mm thick and up to 16 mm wide were produced in this initial work. The ribbons are p-type, 0.07 Ω∙cm, and have long crystals about 1 mm wide. Electron-diffusion lengths of 20–30 μm were measured. Calculations indicate that solar-cell efficiencies up to 13% should be possible. If the process can be scaled up and automated, the cost of volume production could be as low as 43 cents/W. It is concluded that the process has the potential for achieving low-cost "solar-grade" substrates and has advantages over other processes. Further work is planned.


2016 ◽  
Vol 880 ◽  
pp. 21-24
Author(s):  
Kamlesh Kumar ◽  
Pankaj Ahirwar ◽  
Manoj Masanta

In this study, AISI 1020 plate of 6 mm thickness has been welded by autogenous TIG welding process maintaining different root gap (0, 0.5, 0.75 and 1 mm). The weld bead profile and the tensile strength of the welded joint has been analysed. From the experimental results it is revealed that, for increasing the root gap, weld depth penetration increases; whereas weld bead width and heat affected zone (HAZ) is almost uniform. However, at the similar condition, under-filling of the weld joint increases with the increase in root gap. For using 1 mm root gap, weld joint exhibit full depth of penetration and maximum tensile strength, along with higher under-filling.


2011 ◽  
Vol 2011 (1) ◽  
pp. 001040-001046 ◽  
Author(s):  
K. A. Schroder ◽  
Ian M. Rawson ◽  
Dave S. Pope ◽  
S. Farnsworth

Photonic curing is a transient thin-film thermal processing technique using flashlamps. It was developed by NovaCentrix® and incorporated in the PulseForge® toolset to address the need of the printed electronics industry to process high temperature materials on low temperature substrates such as paper and plastic on a moving web. Applications include photovoltaics, displays, solid state lighting, thin film batteries, RFID tags, and printed circuits. The ability to substitute inexpensive and flexible substrates for expensive, rigid substrates while achieving similar performance can dramatically reduce the cost of the final product and enable new products. In this paper, we discuss the technology and mechanisms of the process and illustrate a case study of forming copper traces on plastic and paper in a roll-to-roll environment. Here, a low cost copper oxide ink is printed on plastic or paper and chemically reacted using pulsed light from the PulseForge tool to form highly conductive copper traces. This process is performed in an ambient atmosphere.


2003 ◽  
Vol 783 ◽  
Author(s):  
Charles E Free

This paper discusses the techniques that are available for characterising circuit materials at microwave and millimetre wave frequencies. In particular, the paper focuses on a new technique for measuring the loss tangent of substrates at mm-wave frequencies using a circular resonant cavity. The benefits of the new technique are that it is simple, low cost, capable of good accuracy and has the potential to work at high mm-wave frequencies.


Author(s):  
Karan S Belsare ◽  
Gajanan D Patil

A low cost and reliable protection scheme has been designed for a three phase induction motor against unbalance voltages, under voltage, over voltage, short circuit and overheating protection. Taking the cost factor into consideration the design has been proposed using microcontroller Atmega32, MOSFETs, relays, small CTs and PTs. However the sensitivity of the protection scheme has been not compromised. The design has been tested online in the laboratory for small motors and the same can be implemented for larger motors by replacing the i-v converters and relays of suitable ratings.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
J. M. Lazarus ◽  
M. Ncube

Abstract Background Technology currently used for surgical endoscopy was developed and is manufactured in high-income economies. The cost of this equipment makes technology transfer to resource constrained environments difficult. We aimed to design an affordable wireless endoscope to aid visualisation during rigid endoscopy and minimally invasive surgery (MIS). The initial prototype aimed to replicate a 4-mm lens used in rigid cystoscopy. Methods Focus was placed on using open-source resources to develop the wireless endoscope to significantly lower the cost and make the device accessible for resource-constrained settings. An off the shelf miniature single-board computer module was used because of its low cost (US$10) and its ability to handle high-definition (720p) video. Open-source Linux software made monitor mode (“hotspot”) wireless video transmission possible. A 1280 × 720 pixel high-definition tube camera was used to generate the video signal. Video is transmitted to a standard laptop computer for display. Bench testing included latency of wireless digital video transmission. Comparison to industry standard wired cameras was made including weight and cost. The battery life was also assessed. Results In comparison with industry standard cystoscope lens, wired camera, video processing unit and light source, the prototype costs substantially less. (US$ 230 vs 28 000). The prototype is light weight (184 g), has no cables tethering and has acceptable battery life (of over 2 h, using a 1200 mAh battery). The camera transmits video wirelessly in near real time with only imperceptible latency of < 200 ms. Image quality is high definition at 30 frames per second. Colour rendering is good, and white balancing is possible. Limitations include the lack of a zoom. Conclusion The novel wireless endoscope camera described here offers equivalent high-definition video at a markedly reduced cost to contemporary industry wired units and could contribute to making minimally invasive surgery possible in resource-constrained environments.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 882
Author(s):  
M. Munzer Alseed ◽  
Hamzah Syed ◽  
Mehmet Cengiz Onbasli ◽  
Ali K. Yetisen ◽  
Savas Tasoglu

Civil wars produce immense humanitarian crises, causing millions of individuals to seek refuge in other countries. The rate of disease prevalence has inclined among the refugees, increasing the cost of healthcare. Complex medical conditions and high numbers of patients at healthcare centers overwhelm the healthcare system and delay diagnosis and treatment. Point-of-care (PoC) testing can provide efficient solutions to high equipment cost, late diagnosis, and low accessibility of healthcare services. However, the development of PoC devices in developing countries is challenged by several barriers. Such PoC devices may not be adopted due to prejudices about new technologies and the need for special training to use some of these devices. Here, we investigated the concerns of end users regarding PoC devices by surveying healthcare workers and doctors. The tendency to adopt PoC device changes is based on demographic factors such as work sector, education, and technology experience. The most apparent concern about PoC devices was issues regarding low accuracy, according to the surveyed clinicians.


2020 ◽  
Vol 10 (1) ◽  
pp. 674-680
Author(s):  
Piotr Sęk

AbstractThe purpose of the experiment was to study the influence of the laser beam in pulse mode on metallic foils in order to obtain a spot weld. The welding process was carried out using the overlap weld method, using spot welds in various quantities. The Nd - YAG BLS 720 pulsed laser was used to conduct the experiment. The impact of the number of spot welds on the value of force needed to break the sample was examined. A number of measurements were carried out to determine the best process parameters. Butt welding and overlap welding were also performed using a continuous weld consisting of spot welds. Weld strength tests were performed to select the most appropriate parameters for the process under consideration.


Sign in / Sign up

Export Citation Format

Share Document