Study on Main Cable-Shaped of Long-Span Suspension Bridge

2010 ◽  
Vol 160-162 ◽  
pp. 939-944
Author(s):  
Lu Rong Cai ◽  
Rong Hui Wang ◽  
Kong Liang Chen ◽  
Chang Hai Liu

The main cable is made of PPWS. Its large displacement and nonlinear mechanical properties are shown by their own elastic deformation and its geometry changes affecting the system balance. To get the real main cable-shaped of long-span suspension bridge, based on the finite element method, the element stiffness matrix was derived, which displacement field was same to the element shape. Then through the horizontal and vertical direction equilibrium equations were solved, the relationship between main cable shape and the system parameters was obtained. The calculation method was compiled to MATLAB 7.0 programs, and applied to ascertain the main cable-shaped of one long-span suspension bridge. When the paper calculated result was contrasted with the design value, it could be concluded that: the main cable-shaped of long-span suspension bridge could be accurately obtained by the paper method, and the method was convenient for compiling.

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Myung-Rag Jung ◽  
Dong-Ju Min ◽  
Moon-Young Kim

A simplified analytical method providing accurate unstrained lengths of all structural elements is proposed to find the optimized initial state of self-anchored suspension bridges under dead loads. For this, equilibrium equations of the main girder and the main cable system are derived and solved by evaluating the self-weights of cable members using unstrained cable lengths and iteratively updating both the horizontal tension component and the vertical profile of the main cable. Furthermore, to demonstrate the validity of the simplified analytical method, the unstrained element length method (ULM) is applied to suspension bridge models based on the unstressed lengths of both cable and frame members calculated from the analytical method. Through numerical examples, it is demonstrated that the proposed analytical method can indeed provide an optimized initial solution by showing that both the simplified method and the nonlinear FE procedure lead to practically identical initial configurations with only localized small bending moment distributions.


2019 ◽  
Vol 23 (2) ◽  
pp. 219-233 ◽  
Author(s):  
Jingyu Zhang ◽  
Mingjin Zhang ◽  
Yongle Li ◽  
Chen Fang

The typical U-shaped deep-cut canyon is widely distributed in the western mountainous areas of China, especially in Sichuan province and Yunnan province. The deep-cut canyon has the characteristics of the high drop in elevation, high-temperature difference, and complex wind environment. A 50 m high meteorological mast with a total of eight anemometers was erected in such topography, and a long-span suspension bridge will be constructed in the area where the meteorological mast is located. Based on the long-term monitor data, the wind characteristic parameters including average and fluctuating wind characteristics and coherence between different heights are investigated. The results are as follows. The dominant wind direction which depends on the topography is north–south. The attack angle of wind is mainly less than zero, and its probability distribution obeys the hypothetical Gaussian distribution. Both the increases in height of anemometer and in wind speed reduce the dispersion of the attack angle of wind. The gust factor has a similar change law of attack angle of wind. Turbulence intensities are affected by the height of the anemometer and the wind speed, and they are different from the recommended value of China Codes. In terms of turbulence integral length scale, the value increases with an increase in the height of the anemometer in the same component. The largest value occurs in the longitudinal direction and the smallest occurs in the vertical direction at the same level. The coherence between any two locations is relatively strong, and the longitudinal component is stronger than others. The measured wind power spectrum for longitudinal, lateral, and vertical wind in deep-cut canyon fits the von Kármán model better.


2013 ◽  
Vol 838-841 ◽  
pp. 1096-1101 ◽  
Author(s):  
Feng Jiang Qin ◽  
Jin Di ◽  
Jie Dai ◽  
Guang Ling Li

A 3-D finite element model for Yueyang Dongting Lake bridge was established with a large scale general finite element analysis software, and the subspace iteration method was adopted to analyze the natural vibration characteristics of the bridge, meanwhile, the influences of settings different types of central buckles at the mid-span of the main spans between the main cables and girder on the dynamic behaviors of the long-span suspension bridge with deck-truss composite stiffening girder were studied. The results show that compared with only setting short hanger cable at mid-span, the the whole rigidity of suspension bridge is raised and the natural frequencies increase by the setting central buckle, but various types of vibration modes are affected in different extents; among all of these vibration modes, the antisymmetric vibration and Longitudinal floating of stiffening girder are most obviously affected. The stiffness of central buckle has a great influence on the vibration of main cable, while compared with only setting short hanger cable, the vibration of main cable increases 7.32% while setting the rigid central buckle. The conclusions of this paper provide theoretical basis for the using of central buckle in long-span suspension bridge.


2011 ◽  
Vol 250-253 ◽  
pp. 3381-3386 ◽  
Author(s):  
Da Wang ◽  
Yi Zhou Zhu

In order to study the influences of structure parameters on the structure mechanical characteristics of long-span suspension bridge. The Shiduhe bridge in Hubei Province was taken as the background of this study, The influence on structure line shape and free vibration characteristics of suspension bridge with the change of structure parameters was studied. The results show that main cable stiffness not only has greater effect on the structure shape of long-span suspension bridge, it also has obvious impact on structure free vibration frequency, in addition, the torsion displacement of stiffening girder can be reduced effectively by adding central buckle, it improves structure bending and torsion stiffness significantly, central buckle also can improve free vibration frequency of structure and enhance structure dynamic stability, It shows that the influencing factors of structure static characteristics are restricted by rigidity of main cable, free vibration characteristics are affected by main cable and central buckle, they are not very sensitive to the variations of the parameters of suspender cable, stiffening girder and main tower.


2014 ◽  
Vol 711 ◽  
pp. 361-365
Author(s):  
Guo Jun Yang ◽  
Xian Wu Hao ◽  
Ji Peng Yang

Cableway bridge is a type of suspension bridge which mainly depends on the cable to suffer the force. The method of calculation unstressed length by parabolic method is introduced in this paper, and the form finding analysis of main cable is also analyzed, thus the method of calculation vector height of middle cross and cable force is concluded. Finally, the relationship between vector height and cable force is fitted based on the practical engineering, bedsides, the error is analyzed between design value and measured value, which comes to the conclusion that measured value is good agreement with design value.


2021 ◽  
Vol 11 (13) ◽  
pp. 5920
Author(s):  
Dagang Wang ◽  
Jihong Ye ◽  
Bo Wang ◽  
Magd Abdel Wahab

The long-span multi-tower suspension bridge is widely used in the construction of river and sea crossing bridges. The load-bearing safety and anti-sliding safety of its main cable are directly related to the structural safety of a suspension bridge. Failure mechanisms of the main cable of a long-span multi-tower suspension bridge are discussed. Meanwhile, the tribo-corrosion-fatigue of main cable, contact, and slip behaviors of the saddle and service safety assessment of the main cable are reviewed. Finally, research trends in service safety assessment of main cable are proposed. It is of great significance to improve the service safety of the main cable and thereby to ensure the structural safety of long-span multi-tower suspension bridges.


2011 ◽  
Vol 243-249 ◽  
pp. 1557-1560 ◽  
Author(s):  
Hong Yu Zheng ◽  
Huai Yan Jiang ◽  
Zhi Tao Lu

A non-corrosion, high strength, light weight material – carbon fiber reinforced polymer (CFRP) is introduced to replace steel as cable system in long-span suspension bridge for improving loading efficiency, reducing maintenance cost, enlarging the span of suspension bridge. Because of the transverse weakness of CFRP, traditional cable saddle is not suitable. The contact forces between main cable and cable saddle slot under final state are investigated with a simplified analytical method. According to the mechanical characteristics of CFRP and the formulas deduced, the design suggestion of cable saddle for CFRP main cable of long-span suspension bridge are proposed.


2019 ◽  
Vol 9 (23) ◽  
pp. 5158
Author(s):  
Quan Pan ◽  
Zhuangpeng Yi ◽  
Donghuang Yan ◽  
Hongsheng Xu

The rail-cable-shifting-girder (RCSG) technique is a new erecting method for the main girders of the long span suspension bridge in rural mountain areas with poor transportation and no navigable rivers for carrying large components. The pseudo-static analysis of the shifting-girder process for this girder erecting technique is performed. The global mechanical model of the double-layer cable system in the shifting-girder process is established, by analytically modeling the main-cable, rail cable, and slings according to cable’s basic assumptions. Based on the flexible cable theory, the main-cable segments are simulated as segmental catenary elements, the slings are considered as straight cable elements, the rail-cable segment that the shifting-girder trolley is moving on is simulated as multiple straight cable elements and other rail-cable segments are considered as single straight cable elements. The solving program is developed to obtain the pseudo-static responses including the forces and deflections of the shifting-girder system undergoing girder loads. Meanwhile, a global indoor reduced-scale model of shifting-girder system is designed to validate the presented theoretical results, by taking the Aizhai suspension bridge as engineering background. The results from the presented theoretical method match well with the measured experimental results of the indoor model test. The forces and deflections of the main-cable, rail-cable, and slings for the 21 working cases of erecting girder segments exhibit some specific distribution regularities. The presented theoretical method is able to correctly and effectively solve the pseudo-static responses of the RCSG system undergoing girder loads for the long span suspension bridge adopting the construction method of the RCSG technique.


2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


Sign in / Sign up

Export Citation Format

Share Document