Study on the Preparation of Steady-State Chitosan Nanoparticle as Silk-Fabric Finishing Agent

2011 ◽  
Vol 175-176 ◽  
pp. 745-749
Author(s):  
Cheng Wang ◽  
Hong Lin ◽  
Yu Yue Chen

The chitosan nanoparticles can be prepared by ionotropic gelation method in dispersion system. Chitosan nanoparticle has advantages of both the chitosan and the nano particles, and so it has a wide application in the textile finishing field. In this paper, the effects of the concentration of TPP, Span-80, deposited time and pH value on the diameter distribution of the chitosan nanoparticles are discussed in order to obtain the optimized preparation technics of steady state chitosan nanoparticle. The results show that chitosan nanoparticles are successfully prepared by ionotropic gelation method. Under the optimized preparation technics, chitosan nanoparticles disperse homogeneously in the system and have a good steady state. The average diameter of chitosan nanoparticle in the dispersion system is 20.82nm. Compared with the ordinary silk fabric, the B. mori silk fabric treated with chitosan nanoparticle dispersion system has better deepen effect of reactive dyes. The chitosan nanopartilce dispersion system is helpful to improve the dye uptake and dye fixation of silk fabrics.

2013 ◽  
Vol 796 ◽  
pp. 92-97 ◽  
Author(s):  
Cheng Wang ◽  
Hong Lin ◽  
Yu Yue Chen ◽  
Yan Hua Lu

Due to the advantages of both the chitosan and the nanomaterial, chitosan nanoparticle has a broad application in a lot of fields, such as medicine carrier, food process, cosmetics and agriculture protect. And there also appears a lot of research about chitosan nanoparticle in textile finishing in recent years. In former research, steady state chitosan nanoparticles were prepared by ionotropic gelation method in dispersion system. In this paper, in order to confirm the preparation of low molecular weight chitosan nanoparticle, it was also characterized by Fourier Transform Infrared (FT-IR) Spectrometry, X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). Focusing on the application value, chitosan nanoparticles dispersion solution were used as one kind of textile finishing agent to modifyB.morisilk fabrics in order to realize the functionalization of silk fabrics. The wrinkle resistance and bacteria repellency of silk fabrics were tested in the paper. The results showed that chitosan nanoparticles were successfully prepared and confirmed accrording to the XRD, FT-IR and TEM tests. In addition, compared with the ordinaryB. morisilk fabric and theB. morisilk fabric treated with chitosan accordingly, theB. morisilk fabrics treated with chitosan nanoparticle dispersion system had better wrinkle resistance and bacteria repellency.


2011 ◽  
Vol 331 ◽  
pp. 330-333
Author(s):  
Yan Hua Lu ◽  
Zhi Mei Liu

In order to increase the anti-bacterail property of tussah silk fabric, a nano-material dispersion system contained titanium dioxide nano-particles, chitosan, 1,2,3,4-butane tetracarboxylic acid, sodium monophosphate and surfactants was prepared. The particles in the dispersion solution have a narrow particle size distribution with average particle diameter of approximately 40 nm. Tussah silk fabric was then modified with the dispersion system using a conventional pad-dry-cure method. The structure of the modified tussah silk was characterized by X-ray photoelectron spectroscopy (XPS). The anti-bacterial efficiency of the treated tussah silk fabric with the dispersion system at a concentration of 0.2% nano-titanium dioxide and 0.5% chitosan showed over 99% of bacterial reduction against the Staphylococcus aureus(S. aureus) and gram-negative bacterium Escherichia Coli (E. Coli). In addition, the anti-bacterial reduction was maintained over 90% even after being exposed to 20 consecutive launderings.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2302
Author(s):  
Qingwen Yu ◽  
Zhiyuan Meng ◽  
Yichao Liu ◽  
Zehao Li ◽  
Xing Sun ◽  
...  

After an osteosarcoma excision, recurrence and bone defects are significant challenges for clinicians. In this study, the curcumin (Cur) loaded chitosan (CS) nanoparticles (CCNP) encapsulated silk fibroin (SF)/hyaluronic acid esterified by methacrylate (HAMA) (CCNPs-SF/HAMA) hydrogel for the osteosarcoma therapy and bone regeneration was developed by photocuring and ethanol treatment. The micro or nanofibers networks were observed in the CCNPs-SF/HAMA hydrogel. The FTIR results demonstrated that alcohol vapor treatment caused an increase in β-sheets of SF, resulting in the high compression stress and Young’s modulus of CCNPs-SF/HAMA hydrogel. According to the water uptake analysis, SF caused a slight decrease in water uptake of CCNPs-SF/HAMA hydrogel while CCNPs could enhance the water uptake of it. The swelling kinetic results showed that both the CCNPs and the SF increased the swelling ratio of CCNPs-SF/HAMA hydrogel. The accumulative release profile of CCNPs-SF/HAMA hydrogel showed that the release of Cur from CCNPs-SF/HAMA hydrogel was accelerated when pH value was decreased from 7.4 to 5.5. Besides, compared with CCNPs, the CCNPs-SF/HAMA hydrogel had a more sustainable drug release, which was beneficial for the long-term treatment of osteosarcoma. In vitro assay results indicated that CCNPs-SF/HAMA hydrogel with equivalent Cur concentration of 150 μg/mL possessed both the effect of anti-cancer and promoting the proliferation of osteoblasts. These results suggest that CCNPs-SF/HAMA hydrogel with superior physical properties and the bifunctional osteosarcoma therapy and bone repair may be an excellent candidate for local cancer therapy and bone regeneration.


1932 ◽  
Vol 15 (6) ◽  
pp. 667-689 ◽  
Author(s):  
W. J. V. Osterhout ◽  
W. M. Stanley

Inasmuch as attempts to explain accumulation by the Donnan principle have failed in the case of Valonia, a hypothesis of the steady state has been formulated to explain what occurs. In order to see whether this hypothesis is in harmony with physico-chemical laws attempts have been made to imitate its chief features by means of a model. The model consists of a non-aqueous layer (representing the protoplasmic surface) placed between an alkaline aqueous phase (representing the external solution) and a more acid aqueous phase (representing the cell sap). The model reproduces most of the features of the hypothesis. Attention may be called to the following points. 1. The semipermeable surface is a continuous non-aqueous phase. 2. Potassium penetrates by combining with an acid HX in the non-aqueous layer to form KX which in turn reacts with an acid HA in the sap to form KA. Since KX is little dissociated in the non-aqueous layer potassium appears to pass through it chiefly in molecular form. 3. The internal composition depends on permeability, e.g., sodium penetrates less rapidly than potassium and in consequence potassium predominates over sodium in the "artificial sap." The order of penetration in the model is the same as in Valonia, i.e., K > Na > Ca > Mg, and Cl > SO4, but the quantitative resemblance is not close, e.g., the difference between potassium and sodium, and chloride and sulfate is much less in the model. 4. The formation of KA and NaA in the sap raises its osmotic pressure and water enters. 5. The concentration of potassium and sodium and the osmotic pressure become much greater inside than outside. For example, potassium may become 200 times as concentrated inside as outside. 6. No equilibrium occurs but a steady state is reached in which water and salt enter at the same rate so that the composition of the sap remains constant as its volume increases. 7. Since no equilibrium occurs there is a difference of thermodynamic potential between inside and outside. At the start the thermodynamic potential of KOH is much greater outside than inside. This difference gradually diminishes and in the steady state has about the same value as in Valonia. The difference in pH value between the internal and external solutions is also similar in both cases (about 2 pH units). 8. Accumulation does not depend on the presence of molecules or ions inside which are unable to pass out. One important feature of the hypothesis is not seen in the model: this is the exchange of HCO3 for Cl-. Experiments on this point are in progress.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5155
Author(s):  
Jin Li ◽  
Haoru Wang ◽  
Zhi Li ◽  
Zhengcheng Su ◽  
Yue Zhu

In recent years, surface plasmon resonance devices (SPR, or named plamonics) have attracted much more attention because of their great prospects in breaking through the optical diffraction limit and developing new photons and sensing devices. At the same time, the combination of SPR and optical fiber promotes the development of the compact micro-probes with high-performance and the integration of fiber and planar waveguide. Different from the long-range SPR of planar metal nano-films, the local-SPR (LSPR) effect can be excited by incident light on the surface of nano-scaled metal particles, resulting in local enhanced light field, i.e., optical hot spot. Metal nano-particles-modified optical fiber LSPR sensor has high sensitivity and compact structure, which can realize the real-time monitoring of physical parameters, environmental parameters (temperature, humidity), and biochemical molecules (pH value, gas-liquid concentration, protein molecules, viruses). In this paper, both fabrication and application of the metal nano-particles modified optical fiber LSPR sensor probe are reviewed, and its future development is predicted.


2012 ◽  
Vol 248 ◽  
pp. 594-598
Author(s):  
Gang Zhao ◽  
Hai Rong Cui ◽  
Qiu Li Ding ◽  
Xu Feng Wang ◽  
Shi Xi Tian ◽  
...  

Series ferrofluid based sensors are novel sensors which use ferrofluid as inductive core to measure signals. The physical properties of ferrofluid affect mostly on performance parameter of these series sensors. There is several generality regularity for ferrofluid appliedd in series sensors. This paper analyses the generality of parameter controlling for properties of ferrofluid used in series ferrofluid sensors. The working area of magnetization curve of ferrofluid used in series sensors should be in its linear area where the permeability of ferrofluid is considered as a constant. The magnetic nano-particles generally obtained by reaction of ferrous chloride and ferric chloride. With the increment of viscosity and density of ferrofluid, the saturation magnetic intensity of ferrofluid increases. The concentration of reacted solution is better to be 0.6mol/L. Saturation magnet intensity of magnetic nano-partcles is highest as the molar ratio of trivalent iron ion to bivalent iron ion is equal to 1.75. The reacted temperature is better between 65~80°C while PH value of solution is in a weak alkaline state.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1226
Author(s):  
Zhihui Jia ◽  
Chun Yang ◽  
Fangnan Zhao ◽  
Xiaolian Chao ◽  
Yuhu Li ◽  
...  

To delay acidification and deterioration during natural aging, deacidification and reinforcement of paper manuscripts have been the most important technologies to prolong the life of objects. Herein, a novel approach for the conservation of paper manuscripts is proposed using chitosan nanoparticles as Lewis base that leads to both deacidification and strengthening of paper in one-step. Chitosan nanoparticles were prepared through physical ball grinding method and characterized via scanning electron microscopy (SEM), X-ray diffraction (XRD), laser particle size analyzer (LPSA), Fourier transform infrared spectroscopy (FTIR), and atomic force microscope (AFM). To evaluate the resistance of chitosan nanoparticle coating, the mechanical properties of paper after artificial aging were evaluated using dry heat and hygrothermal accelerated aging methods. The SEM, EDX, and X-ray Photoelectron Spectroscopy (XPS) were used to analyze the interaction mechanism between chitosan and Shuxuan paper. The results show that the coated paper had superior durability with respect to pH, tensile strength, and folding endurance. There was a presence of protonated amines in the form of ammonium salts due to ionic bindings with free H+ in the acidified paper, and the remaining –NH2 could be used as a base reserve. Finally, the resulting coated papers displayed good antibacterial properties.


2012 ◽  
Vol 602-604 ◽  
pp. 227-230
Author(s):  
Tao Fan ◽  
Yan Rong Sun ◽  
Li Guo Ma

Spheroid hydroxyapatite nanoparticles were successfully prepared by titrating Ca(NO3)2•4H2O and (NH4)2HPO4 aqueous solution in the reverse microemulsion, which consists of mixed OP-10(surfactant), cyclohexane(oil phase), and isobutanol (cosurfactant).The structure and morphology of the prepared powders were characterized by means of X-ray diffraction (XRD) and transmission electron microscope (TEM). The optimum composition was investigated via the analysis of the aqueous solution conductivity, and the mechanism of aqueous reaction. The effect of the pH value and the amount of surfactant on the particle size were studied. The results indicate that the best conditions are which the concentration of OP-10 and isobutanol both are 0.2 M, when the water content is between 130 ml-250 ml,it results in pure nano-hydroxyapatite spheroid-like powders, and the water content is about 200 ml, whose diameters are 50 nm-80 nm, and good particle diameter distribution, the particle microstructure is homogeneous, good crystal structure and higher crystallinity.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jefferson Muniz de Lima ◽  
Ronaldo Rodrigues Sarmento ◽  
Joelma Rodrigues de Souza ◽  
Fábio André Brayner ◽  
Ana Paula Sampaio Feitosa ◽  
...  

Chitosan is a polysaccharide composed of randomly distributed chains ofβ-(1-4) D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L−1. The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS) collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH.


Sign in / Sign up

Export Citation Format

Share Document