High Temperature Wear of Ti3AlC2 Sliding against Al2O3

2010 ◽  
Vol 177 ◽  
pp. 118-120 ◽  
Author(s):  
Feng Jiang ◽  
Shu Fang Ren ◽  
Jun Hu Meng ◽  
Jin Jun Lu

Bulk Ti3AlC2 was prepared via hot pressing TiC, Ti and Al powders in vacuum. The sliding wear of Ti3AlC2 against Al2O3 at room temperature up to 800°C was investigated on a SRV-IV oscillating friction and wear tester. Reduced wear and wear transition of Ti3AlC2/Al2O3 tribo-couple were found by increasing temperature. The worn surfaces of both Ti3AlC2 and Al2O3 were analyzed by scanning electron microscope and X-ray photoelectron spectrometer. It was found that the severe wear of Ti3AlC2 and Al2O3 from room temperature to 200°C was related to mechanical wear, i.e. grain fracture and pullout of Ti3AlC2. At temperature higher than 400°C, the tribo-oxidation layer on the worn surface of Ti3AlC2 containing TiO2 and Al2O3 was beneficial for reducing wear of both Ti3AlC2 and Al2O3.

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Zonggang Mu ◽  
Xiaoxuan Wang ◽  
Shuxiang Zhang ◽  
Yongmin Liang ◽  
Meng Bao ◽  
...  

A series of room temperature ionic liquids bearing with phosphonyl groups on the imidazolium cations, namely, 1-(3′-O,O-diethylphosphonyl-n-propyl)-3-alkylimidazolium tetrafluoroborate, were prepared and their physical properties were determined. They were also evaluated as promising lubricants for the contacts of aluminum on steel by using a SRV test rig. The tribological test results show that the synthetic ionic liquids exhibit better friction-reducing and antiwear abilities than the unsubstituted ionic liquid of 1-ethyl-3-hexylimidazolium tetrafluoroborate (coded as L206) and phosphazene (X-1P). Both the anions and the side substitutes attached to the imidazolium cations affect the tribological performance of lubricants. The scanning electron microscopy, energy-dispersive x-ray analysis, and x-ray photoelectron spectroscopy analyses of the worn surfaces show that complicated tribochemical reactions are involved in the sliding process. The anion decomposition and chemical adsorption of cation took place on the worn surface of aluminum alloy during the sliding process. As a result of the generation of boundary lubrication films which are composed of metal fluorides, B2O3, BN, nitrogen oxide, and FePO4 help to effectively reduce the friction and wear of the contacts.


2010 ◽  
Vol 34-35 ◽  
pp. 1916-1919
Author(s):  
Bing Li Pan ◽  
Chun Fei Zhang ◽  
Yu Qing Zhang

Reaction injection molding (RIM) is a rapid processing technique for the formation of polymer parts by direct polymerization in the mold. Polydicyclopentadiene (PDCPD)/Clay nanocomposites with various amounts of clay were synthesized with a Gusmer-Decker machine by RIM, and the specific injection conditions of the nanocomposites were obtained. The results of X-ray diffraction (XRD) diagrams of the nanocomposites showed that clay were completely exfoliated. The tribological behaviors of PDCPD nanocomposites were studied using an MM-200 friction and wear tester. The experimental results showed that the wear mass loss of nanocomposites reach the minimum while the MMT content of the nanocomposites is 1wt%. The values of friction coefficient almost keep constant within the range of MMT content as added.The worn surface of PDCPD nanocomposites was examined with a scanning electron microscope (SEM) and the friction and wear mechanism was discussed.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2005 ◽  
Vol 20 (5) ◽  
pp. 1122-1130 ◽  
Author(s):  
Y.X. Yin ◽  
H.M. Wang

Wear-resistant Cu-based solid-solution-toughened Cr5Si3/CrSi metal silicide alloy with a microstructure consisting of predominantly the dual-phase primary dendrites with a Cr5Si3 core encapsulated by CrSi phase and a small amount of interdendritic Cu-based solid solution (Cuss) was designed and fabricated by the laser melting process using Cr–Si–Cu elemental powder blends as the precursor materials. The microstructure of the Cuss-toughened Cr5Si3/CrSi metal silicide alloy was characterized by optical microscopy, powder x-ray diffraction, and energy dispersive spectroscopy. The Cuss-toughened silicide alloys have excellent wear resistance and low coefficient of friction under room temperature dry sliding wear test conditions with hardened 0.45% C carbon steel as the sliding–mating counterpart.


2003 ◽  
Vol 18 (9) ◽  
pp. 2050-2054 ◽  
Author(s):  
Marcello Gombos ◽  
Vicente Gomis ◽  
Anna Esther Carrillo ◽  
Antonio Vecchione ◽  
Sandro Pace ◽  
...  

In this work, we report on the observation of Nd1Ba6Cu3O10,5 (Nd163) phase of the NdBaCuO system in melt-textured Nd123 bulk samples grown from a mixture of Nd123 and Nd210 phase powders. The observation was performed with polarized light optical microscopy and scanning electron microscopy–energy dispersive x-ray analyses. Images of the identified phase crystals show an aspect quite different from Nd422 crystals. Unexpectedly, Nd163 was individuated, even in “pure” Nd123 samples. Moreover, after long exposure to air, Nd163 disappeared completely in samples synthesized from powders containing Nd210. Thermogravimetry analyses of powders show that the stability of this phase in air is limited to temperatures higher than 900 °C, so Nd163 is unstable and highly reactive at room temperature. Moreover, an explanation of the observation of Nd163 in Nd210 free samples, based on the spontaneous formation of Nd163 phase in a Nd123 melt, is proposed.


2014 ◽  
Vol 941-944 ◽  
pp. 280-283
Author(s):  
Xiao Yang Wang ◽  
Hong Qiang Ru

SiC particle-reinforced Cu-Fe based braking materials were fabricated by the P/M hot pressing method. The phase composition, microstructure and the worn surface of the composite were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD).The tribological properties were evaluated using a disk-on-disk type laboratory scale dynamometer. Results indicate that the friction coefficient is 0.42 in 6800rpm, 0.7MPa. With the increase of rotation speeds the coefficient of friction and stable rate were decreased.


2013 ◽  
Vol 634-638 ◽  
pp. 2358-2361
Author(s):  
Jun Cong Wei ◽  
Li Rong Yang

The effects of Si3N4 addition on the room temperature physical properties and thermal shock resistance properties of corundum based refractory castables were investigated using brown corundum, white corundum and alumina micropowder as the starting materials and pure calcium aluminate as a binder. The phase composition, microstructure, mechanical properties of corundum based castables were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that as the increase in Si3N4 addition, the bulk density decreased and apparent porosity increased, the cold strength deduced. However, the residual strength rate increased. That is, the thermal shock resistance was improved. This is because even though the introduction of Si3N4 inhibited the sintering of material and deduced the compactness, microcracks were produced in the materials due to a difference in thermal expansion coefficient. So the thermal shock resistance of corundum based castable was improved.


2014 ◽  
Vol 979 ◽  
pp. 184-187
Author(s):  
Weerachon Phoohinkong ◽  
Thitinat Sukonket ◽  
Udomsak Kitthawee

Zinc sulfide (ZnS) nanostructures are important materials for many technologies such as sensors, infrared windows, transistors, LED displays, and solar cells. However, many methods of synthesizing ZnS nanostructures are complex and require expensive equipment. In this study, a liquid-solid chemical reaction without surfactant was used to synthesize ZnS at room temperature. In addition, commercial grade zinc oxide (ZnO) particles were used as a precursor. The effect of the addition of acids and inorganic salts were investigated. The products were characterized by field emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results show that the nanoparticles of ZnS were obtained in hydrochloric acid and acetic acid addition. The diameters were in the range of 10 to 20 nm and 50 to 100 nm, respectively. In the case of a sodium chloride salt addition, a ZnS structure was obtained with a particle size of approximately 5 nm and a flake-like morphology.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Jiaxiang Chen ◽  
Xiaopeng Jia ◽  
Yuewen Zhang ◽  
Haiqiang Liu ◽  
Baomin Liu ◽  
...  

The polycrystalline skutterudite [Formula: see text] were successfully synthesized from 1.5 GPa to 3.5 GPa by the high pressure and high temperature (HPHT) method. Negative Seebeck coefficient confirmed the n-type conductivity of all samples. The phase compositions of samples were investigated by X-ray diffraction (XRD) and the microstructures were observed by scanning electron microscopy (SEM). It was found that the grains appeared smaller and the grain boundaries became more abundant when pressures were higher. We measured the electrical properties from room temperature to 723 K. Both the electrical resistivity and absolute value of Seebeck coefficient increase with the increasing synthetic pressure. At 723 K, the maximum power factor of [Formula: see text] was obtained for the sample synthesized under 3 GPa. The maximum ZT value of 0.61 was reached by [Formula: see text] synthesized under 3 GPa and measured at 723 K.


Author(s):  
Brijesh Pare ◽  
Satish Piplode ◽  
Vaishali Joshi

Flower like bismuth oxy chloride (BiOCl) was successfully synthesized by a simple hydrolytic method at room temperature. The precursor and as-prepared samples were characterized by X-ray diffraction (XRD), High Resolution Field Emission Scanning Electron Microscope (HR FESEM). The results indicated that the as-prepared BiOCl sample is self-assembled hierarchically with nano sheets. The photocatalytic activity of BiOCl was tested on the degradation of the Oxamyl (OM) under solar light irradiation. The results showed that pesticide molecules could be efficiently degraded over BiOCl under solar light irradiation. All the experiment were carried out in the following reaction condition, [OM] = 10-4 mol dm-3, BiOCl NPs= 40mg/50ml, pH= 6.3. Effect of operational parameter such as concentration of H2O2, K2S2O8, FeCl3, Fenton’s reagent (Fe3+/H2O2) and N2, O2 purging on the photocatalytic degradation was observed.


Sign in / Sign up

Export Citation Format

Share Document