Temperature Rise and Heat Transfer in High Speed Machining: FEM Modeling and Experimental Validation

2011 ◽  
Vol 189-193 ◽  
pp. 1502-1506 ◽  
Author(s):  
Gautier List ◽  
Guy Sutter ◽  
Xue Feng Bi ◽  
Abdenbi Bouthiche ◽  
Jean Jacques Arnoux

Numerical and experimental approaches are mutually conducted to investigate the temperature rise in steel machining at high cutting speed. The process is modeled using a fully coupled thermo-mechanical finite element scheme. Cutting tests were carried out at 38 m/s on a ballistic orthogonal cutting set-up equipped with an intensified CCD camera. Analysis of experimental results leads to determine the variables which control heat transfer between the tool and chip. A discussion about the most important parameters controlling the temperature rise at the tool-chip interface is then proposed. The results also show that the temperature-dependence of the frictional stress modeling can improve the accuracy of the numerical simulations.

2004 ◽  
Vol 126 (6) ◽  
pp. 931-936 ◽  
Author(s):  
N. Ranc ◽  
V. Pina ◽  
G. Sutter ◽  
S. Philippon

The working processes of metallic materials at high strain rate like forging, stamping and machining often induce high temperatures that are difficult to quantify precisely. In this work we, developed a high-speed broad band visible pyrometer using an intensified CCD camera (spectral range: 0.4 μm–0.9 μm). The advantage of the visible pyrometry technique is to limit the temperature error due to the uncertainties on the emissivity value and to have a good spatial resolution (3.6 μm) and a large observation area. This pyrometer was validated in the case of high speed machining and more precisely in the orthogonal cutting of a low carbon steel XC18. The cutting speed varies between 22 ms−1 and 60 ms−1. The experimental device allows one to visualize the evolution of the temperature field in the chip according to the cutting speed. The maximum temperature in the chip can reach 730°C and minimal temperature which can be detected is around 550°C.


Author(s):  
Charbel Y. Seif ◽  
Ilige S. Hage ◽  
Ahmad M. R. Baydoun ◽  
Ramsey F. Hamade

Abstract Controlling drilling temperature and thrust forces play a significant role in reducing tool wear and improving machining efficiency. In this work, drilling experiments are set up to measure flank surface temperature via thermocouple sensor wires passed through the coolant holes of 10mm twist drill and brazed to the drill flank surface. The testing setup is an inverted drilling jig where the workpiece (Aluminum 6061-T6 rod) is chucked into the spindle of a vertical machining center. Thrust forces are co-measured using Kistler type 3-component plate dynamometer attached to the table. A design of experiment (DOE) using JMP-SAS/STAT® was adopted for selecting combinations of cutting speed and feed values that cover a wide range. Drilling temperature rise and thrust forces are found to correlate with cutting conditions of feed (f), maximum cutting speed (V), and drilling depth (Dp). Nonlinear regression analysis produced correlating equations of flank temperature rise and thrust forces to conditions and follow a mechanistic power law of the form a1fa2Va3Dpa4 where a1, a2, a3 and a4 are identified via regression fitting.


2012 ◽  
Vol 523-524 ◽  
pp. 1041-1046 ◽  
Author(s):  
Tappei Higashi ◽  
Masato Sando ◽  
Jun Shinozuka

High-speed orthogonal cutting experiments with cutting speeds of up to 200 m/s with a high-speed impact cutting tester of air-gun type are attempted. In this tester, a light projectile with a small built-in cutting tool is loaded into a tube, being accelerated by a compressed gas. The projectile captures the chip that is indispensable to analyze the cutting mechanism. The projectile holding the chip is decelerated by another compressed gas just after finishing the cutting, being stopped without damage in the tube. Successful experiment can be accomplished by setting adequate values of the operation parameters for the experiment, which are the pressure of each gas and the opening and shutting time of the solenoid-controlled valve for each compressed gas. In order to determine the adequate values of these parameters, a ballistic simulator that simulates the velocity and position of the projectile traveling in the tube is developed. By setting the values of these parameters obtained by the simulator, the cutting speed of 200 m/s is achieved when the ambient pressure is set to be a vacuum and helium is used for each compressed gas. This paper describes the ballistic simulator developed and shows the experimental results of the high-speed cutting of aluminum alloy A2017.


2012 ◽  
Vol 557-559 ◽  
pp. 1364-1368
Author(s):  
Yong Feng ◽  
Mu Lan Wang ◽  
Bao Sheng Wang ◽  
Jun Ming Hou

High-speed metal cutting processes can cause extremely rapid heating of the work material. Temperature on the machined surface is critical for surface integrity and the performance of a precision component. However, the temperature of a machined surface is challenging for in-situ measurement.So, the finite element(FE) method used to analyze the unique nonlinear problems during cutting process. In terms of heat-force coupled problem, the thermo-plastic FE model was proposed to predict the cutting temperature distribution using separated iterative method. Several key techniques such as material constitutive relations, tool-chip interface friction and separation and damage fracture criterion were modeled. Based on the updated Lagrange and arbitrary Lagrangian-Eulerian (ALE) method, the temperature field in high speed orthogonal cutting of carbon steel AISI-1045 were simulated. The simulated results showed good agreement with the experimental results, which validated the precision of the process simulation method. Meanwhile, the influence of the process variables such as cutting speed, cutting depth, etc. on the temperature distribution was investigated.


Author(s):  
B. Traipattanakul ◽  
C. Y. Tso ◽  
Christopher Y. H. Chao

Condensation of water vapor is an important process utilized in energy/thermal/fluid systems. When droplets coalesce on the non-wetting surface, excess surface energy converts to kinetic energy leading to self-propelled jumping of merged droplets. This coalescing-jumping-droplet condensation can better enhance heat transfer compared to classical dropwise condensation and filmwise condensation. However, the resistance force can cause droplets to return to the surface. These returning droplets can either coalesce with neighboring droplets and jump again, or adhere to the surface. As time passes, these adhering droplets can become larger leading to progressive flooding on the surface, limiting heat transfer performance. However, an electric field is known to be one of the effective methods to prevent droplet return and to address the progressive flooding issue. Therefore, in this study, an experiment is set up to investigate the effects of applied electrical voltages between two parallel copper plates on the jumping height with respect to the droplet radius and to determine the average charge of coalescing-jumping-droplets. Moreover, the gravitational force, the drag force, the inertia force and the electrostatic force as a function of the droplet radius are also discussed. The gap width of 7.5 mm and the electrical voltages of 50 V, 100 V and 150 V are experimentally investigated. Droplet motions are captured with a high-speed camera and analyzed in sequential frames. The results of the study show that the applied electrical voltage between the two plates can reduce the resistance force due to the droplet’s inertia and can increase the effects of the electrostatic force. This results in greater jumping heights and the jumping phenomenon of some bigger-sized droplets. With the same droplet radius, the greater the applied electrical voltage, the higher the coalescing droplet can jump. This work can be utilized in several applications such as self-cleaning, thermal diodes, anti-icing and condensation heat transfer enhancement.


2003 ◽  
Author(s):  
Adrian M. Holland ◽  
Colin P. Garner

This paper discusses the production and use of laser-machined surfaces that provide enhanced nucleate boiling and heat transfer characteristics. The surface features of heated plates are known to have a significant effect on nucleate boiling heat transfer and bubble growth dynamics. Nucleate boiling starts from discrete bubbles that form on surface imperfections, such as cavities or scratches. The gas or vapours trapped in these imperfections serve as nuclei for the bubbles. After inception, the bubbles grow to a certain size and depart from the surface. In this work, special heated surfaces were manufactured by laser machining cavities into polished aluminium plates. This was accomplished with a Nd:YAG laser system, which allowed drilling of cavities of a known diameter. The size range of cavities was 20 to 250 micrometers. The resulting nucleate pool boiling was analysed using a novel high-speed imaging system comprising an infrared laser and high resolution CCD camera. This system was operated up to a 2 kHz frame rate and digital image processing allowed bubbles to be analysed statistically in terms of departure diameter, departure frequency, growth rate, shape and velocity. Data was obtained for heat fluxes up to 60 kW.m−2. Bubble measurements were obtained working with water at atmospheric pressure. The surface cavity diameters were selected to control the temperature at which vapour bubbles started to grow on the surface. The selected size and spacing of the cavities was also explored to provide optimal heat transfer.


Author(s):  
Zengqiang Wang ◽  
Zhanfei Zhang ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Kunyang Lin ◽  
...  

Abstract High speed cutting (HSC) technology has the characteristics of high material removal rates and high machining precision. In order to study the relationships between chip morphology and machining surface characteristic in high speed cutting of superalloy Inconel718. High-speed orthogonal cutting experiment are carried out by used a high speed cutting device based on split Hopkinson pressure bar (SHPB). The specimen surfaces and collected chips were then detected with optical microscope, scanning electron microscope and three-dimensional surface profile measuring instrument. The results show that within the experimental parameters (cutting speed from 8–16m/s, depth of cut 0.1–0.5mm), the obtained chips are sawtooth chips and periodic micro-ripple appear on the machined surface. With the cutting speed increases, machining surface roughness is decreases from 1.4 to 0.99μm, and the amplitude of periodic ripples also decreases. With the cutting depth increases, the machining surface roughness increases from 0.96 to 5.12μm and surface topography becomes worse. With the increase of cutting speed and depth of cut, the chips are transform from continues sawtooth to sawtooth fragment. By comparing the frequency of surface ripples and sawtooth chips, it is found that they are highly consistent.


2021 ◽  
Author(s):  
Ehsan Shakouri ◽  
Pezhman Ghorbani

Abstract One of the main challenges in skull base tumor removal is the thermal damages that occur in response to grinding the skull bone. During this process, temperature rise occurs at the site of bone grinding, and may cause irreversible thermal damage to the bone, nerves, and arteries. The aim of the present research is to study temperature changes during high-speed grinding of bone via infrared thermography to determine the threshold of high-speed cutting range (HSC-range) in order to achieve the minimum temperature rise and minimize the resulting thermal damages. Experimental tests have been performed in 75 states using the parameters of cutting speed (25 states) and feed rate (3 states) on bovine femur samples. The temperature changes of bone have been measured through infrared thermography. The results indicated that temperature rise had a direct relationship with the tool feed rate. Further, the cutting speed of 250 m.min− 1 at different feed rates was the HSC-range threshold, after which a descending trend of temperature rise emerged; each led to the minimum temperature rise and beyond HSC-range, the temperature rise found an ascending trend. Thus, in order to reduce the thermal damage in neurosurgical bone grinding, the following parameters are suggested as follows: cutting speed 350–425 m.min− 1 for the feed rate 20 mm.min− 1 (ΔT = 4.8–8.5°C ); cutting speed 500–550 m.min− 1 for the feed rate 30 mm.min− 1 (ΔT = 7.2–9.3°C), and cutting speed 650–675 m.min− 1 for the feed rate 40 mm.min− 1 (ΔT = 10-12.5°C).


2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Feng Gao ◽  
Weitao Jia ◽  
Yan Li ◽  
Dongya Zhang ◽  
Zhengliang Wang

Abstract For high-speed motorized spindle bearing, temperature rise is the primary factor that restricts the maximum speed of spindle and affects the stability of system. This paper addresses the lubrication and cooling of spindle bearing by exploiting the precise oil control and high cooling efficiency of oil–air lubrication. Enlightened by the bearing tribology and two-phase flow theory, a numerical model of oil–air two-phase flow heat transfer inside bearing cavity is created, with which the effects of operating condition and nozzle structure parameters on the temperature rise are studied. As the results show, with the elevation in speed, the heat generation increases rapidly, and despite the somewhat enhanced heat transfer effect, the temperature still tends to rise. Given the higher volume fraction of air than oil in the two-phase flow, the temperature rise of bearing is suppressed greatly as the air inlet velocity increases, revealing a remarkable cooling effect. When a single nozzle is used, the bearing temperature increases from the inlet to both sides, which peaks on the opposite side of the inlet. In case multiple evenly distributed nozzles are used, the high-temperature range narrows gradually, and the temperature distributions in the inner and outer rings tend to be consistent. With the increase in the nozzle aspect ratio, the airflow velocity drops evidently, which affects the heat dissipation, thereby resulting in an aggravated temperature rise. Finally, the simulation analysis is verified through experimentation, which provides a theoretical basis for selecting optimal parameters for the oil–air lubrication of high-speed bearing.


2011 ◽  
Vol 264-265 ◽  
pp. 1102-1106 ◽  
Author(s):  
Erry Yulian Triblas Adesta ◽  
Muataz H.F. Al Hazza

High speed hard turning is an advanced manufacturing technology that reduces the machining time because of two reasons; reducing the manufacturing steps and increasing the cutting speed. This new approach needs an economical justification; one of the main economical factors is the machining time. The machining time was breaking down into three main parts; productive time, non productive time, and preparation time. By using matlab Simulink, a new program was developed for machining time allowing the manufacturer to find rapidly the values of cutting time parameters and gives the management the opportunity to modify the processing parameters to achieve the optimum time by using the optimum cutting parameters. Table 1: Nomenclature d Depth of cut M T total machining time pmv t Total movement time D Work piece diameter h t handling time pch t Total Tool changing time f Feed rate tc t tool changing time pre t Total preparing time z e Engagement distance on Z-axis ch t Tool changing time per piece, prg t Programming time x e Degagement distance on X-axis am t Machine allowance time su t Set up time k Number of passes ao t Operator allowance time sum t Machine set up L Tool life a t Allowance time sut t Tool set up l Work piece length o t Tool movement at the rapid speed suw t Work piece set up N Spindle speed oA t From zero point to cutting point TH Tool hardness tool n No. of tool posts in the turret p t Total productive time o X tidy of the O t point o1 p Initial position of the turret. o Z = abciss of the O t point w Work piece weigh o2 p Position of the used tool c V Cutting speed c w Width of cutting speed r Rotation speed of the turret f V Feeding speed tool n no. of tool in the turret c t Cutting time o V Rapid speed speed r : Turret rotation speed


Sign in / Sign up

Export Citation Format

Share Document