Grain Refinement in Constrained Groove Pressing of 7050 Aluminum Alloy

2011 ◽  
Vol 189-193 ◽  
pp. 2823-2826 ◽  
Author(s):  
Xiao Lei Dong ◽  
Bing Yun ◽  
Zhi Hao Ma

Constrained groove pressing is a simple and effective method of grain refinement. Using the experimental data obtained by regression analysis, this paper analyzes the simulation of the four pass constrained groove pressing deformation of 7050 aluminum alloy. The simulation results show that the grain size of the billet is refined significantly after four pass constrained groove pressing deformation and decreases from the original 90 μm to a minimum of 14.0 μm. With the increase of the number of deformation passes, refinement effect becomes weakened gradually, the grain size tends to stabilize and the organization is more uniform.

2020 ◽  
Vol 993 ◽  
pp. 130-137
Author(s):  
Yang Qiu ◽  
Zhi Feng Zhang ◽  
Hao Dong Zhao ◽  
Yong Tao Xu

To obtain fine microstructure and homogeneous distribution of alloying elements in the large-sized billet, the internal electromagnetic stirring as a new electromagnetic stirring method was proposed and utilized for the preparation of Ф508 mm 7050 aluminum alloy billet. The results demonstrate that the internal electromagnetic stirring could refine the microstructure and second phase, and alleviated the macrosegregation significantly. The grain size at the edge, 1/2 radius, and center of the billet decreased to 180 μm, 175 μm, and 185 μm, respectively. Moreover, the relative macrosegregation of Zn, Mg, and Cu at the edge and center decreased to 3.9% and 2.8%, 2.3% and 1.6%, 4.1% and 2.5%, respectively.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 600
Author(s):  
Lili Zhang ◽  
Yan Song ◽  
Linjie Yang ◽  
Jiuzhou Zhao ◽  
Jie He ◽  
...  

Synergistic effect of TiB2 (in form of Al-5Ti-1B) and La on grain refining results in Al-2Cu alloy was investigated. α-Al grains are significantly refined by Al-5Ti-1B. When trace La is added to the melt, further refinement is exhibited. Average grain size and nucleation undercooling of α-Al reduce first and then almost remain unchanged with La addition. Satisfactory grain refining result achieves when La addition level reaches 600 ppm. When more than 600 ppm La is added to the melt, La-rich particles form and the effect of solute La left in matrix on the microstructure almost no longer changes. Theoretical calculation results demonstrate that solute La segregates to Al melt/TiB2 particles interface along with Ti and Cu prior to α-Al nucleation and the synergistic effect of La and TiB2 particles on grain refinement mainly attributes to the enhancement in the potency of TiB2 particles to heterogeneously nucleate α-Al by trace La addition.


2012 ◽  
Vol 488-489 ◽  
pp. 19-21
Author(s):  
Chao Jue Yi ◽  
Peng Cheng Zhai ◽  
Li Zhou Dong ◽  
Qi Hao Fu

By using cryogenic treatment on 7A04 aluminum alloy tested with micrographic analysis and mechanical properties test, we studied the impact on mechanical properties of 7A04 aluminum alloy The results showed that the strength of 7A04 aluminum alloy could be highly increased and the grain size would be reduced in the process through being treated in 480°C/80min + aging in 120°C/4h + cryogenic treatment + aging at 120°C/16h.7A04 aluminum alloy are more fully recrystallized to grain refinement and the tensile strength of it can be increased to 720Mpa after the treatment.


2013 ◽  
Vol 589-590 ◽  
pp. 3-7
Author(s):  
Kui Hu Cui ◽  
Cheng Zu Ren ◽  
Guang Chen

In this paper, an advanced 3D FE model was established using ABAQUS Explicit to simulate the process of milling aluminum-alloy 7075-T7451. Taking the end edge and the side edge of single flute into consideration, the model simulated the interaction between the spiral flute and wokpiece at full depth of cut. In addition, by defining automatic element deletion criterion and locally refining mesh, this model realized chip separating from workpiece without defining of cutting layer. The simulation results were compared with experimental data to verify the correctness of the simulation model.


2013 ◽  
Vol 749 ◽  
pp. 328-336
Author(s):  
Quan Lin Jin

A study on grain evolution character of discal parts roll forming was carried out by means of experiment and numerical simulation. The discal part material is aluminum alloy 6061 and titanium alloy TC4. The roll forming temperature is 480-500 and 930-1020 for aluminum alloy 6061 and titanium alloy TC4, respectively. A digital double-sided roll forming machine was used for roll forming experiment of discal parts. The high frequency induction heating was used for disk heating, where the deformation zone is in the state of constant temperature. A numerical simulation of roll forming of the 6061 aluminum alloy disk was carried out. The simulated results include macroscopic deformation and various grain size evolution variables. The dynamic recrystallization, the dynamic and static grain growth were considered in the numerical simulation. The experimental and simulated results showed that there may appear not only the grain refinement due to dynamic recrystallization but also dynamic and static grain growth. It is different that from discal parts integrally forging there are the largest deformation, the highest strain rate and the best recrystallization and grain refinement in the zones contacted with the roll tools. In the zones far from the rollers, the strain rate is very low and average grain size increases until once again contact to the rollers and start new grain refinement.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1439
Author(s):  
Qingfeng Feng ◽  
Hao-Che Ho ◽  
Teng Man ◽  
Jiaming Wen ◽  
Yuxin Jie ◽  
...  

Suffusion constitutes a major threat to the foundation of a dam, and the likelihood of suffusion is always determined by the internal stability of soils. It has been verified that internal stability is closely related to the grain size distribution (GSD) of soils. In this study, a numerical model is developed to simulate the suffusion process. The model takes the combined effects of GSD and porosity (n) into account, as well as Wilcock and Crowe’s theory, which is also adopted to quantify the inception and transport of soils. This proposed model is validated with the experimental data and shows satisfactory performance in simulating the process of suffusion. By analyzing the simulation results of the model, the mechanism is disclosed on how soils with specific GSD behaving internally unstable. Moreover, the internal stability of soils can be evaluated through the model. Results show that it is able to distinguish the internal stability of 30 runs out of 36, indicating a 83.33% of accuracy, which is higher than the traditional GSD-based approaches.


2011 ◽  
Vol 399-401 ◽  
pp. 1708-1711 ◽  
Author(s):  
Yu Bo Zuo ◽  
Zhi Hao Zhao ◽  
Hai Tao Zhang ◽  
Ke Qin ◽  
Jian Zhong Cui

Grain refinement is quite important for producing 7050 alloy ingot especially in large scale. Low frequency electromagnetic casting (LFEC) process was used to make 7050 aluminum alloy Φ310 ingots and study the effect of electromagnetic field and grain refiner on the microstructure of 7050 alloy ingots. The results showed that both grain refiner and low frequency electromagnetic field can result in some grain refinement of 7050 alloy. However, the low frequency electromagnetic field shows more remarkable grain refinement. For the grain refined alloy by grain refiner, further significant grain refinement can be achieved with the application of low frequency electromagnetic field. The finest microstructure was achieved by combining the applications of both grain refiner and electromagnetic field.


2016 ◽  
Vol 850 ◽  
pp. 716-721
Author(s):  
Ya Bao Wang ◽  
Zhen Lin Zhang ◽  
Bao Li ◽  
Zhi Hua Gao ◽  
Zhi Feng Zhang ◽  
...  

7050aluminum alloy billets processed by semi-continuous casting were studied using conventional casting (N-EMS), conventional electromagnetic stirring casting (EMS) and annulus electromagnetic stirring casting (AEMS), respectively. Adopting the method of mathematical statistics, Zn, Mg, Cu chemical component uniformity and the microstructure of 7050 aluminum alloy billets were analyzed. The results showed that the high chemical component uniformity of the AEMS billets were obtained compared with N-EMS and EMS. The Zn, Mg, Cu element component variance was reduced 26% compared with EMS. And the A-EMS process exhibited superior grain refinement and remarkable structure homogeneity, which mainly consisted of rosaceous and nearly globular structure. The average grain size for AEMS sample was 42μm, and the grain shape factor was about 0.68.


2008 ◽  
Vol 584-586 ◽  
pp. 605-609 ◽  
Author(s):  
Olivier Bouaziz ◽  
A. Aouafi ◽  
Sebastien Allain

New experimental data related to the grain size and the Bauschinger effects have been obtained for ferritic steels with grain size in the range of 3.5-22m. As the data show an increasing contribution of the kinematic hardening with grain size refinement, a new physical based model describing the isotropic hardening and the kinematic hardening is presented and validated with regard to the grain size. The consequences are discussed for fine grain metallic alloys.


2014 ◽  
Vol 1035 ◽  
pp. 259-262
Author(s):  
Fei Han ◽  
Hong Wei Liu ◽  
Gang Chen

The microstructural evolution of of as-cast ZK60 magnesium alloy processed by cyclic extrusion and compression (CEC) were studied, and the effects of technical parameters on microstructural evolution were investigated. The results show that the grains of as-cast ZK60 magnesium alloy were obviously refined and uniformed by CEC, the average grain size was decreased from original 50 ~ 60 μm to about 2 μm when the extrusion ratio was 8 with 8-passes at 350°C, and the refinement effect was increased with the rising of extrusion ratio and passes. The effect of increasing passes on grain refinement was not obvious when it exceeds 8. Nevertheless, it is beneficial for the grain homogenization.


Sign in / Sign up

Export Citation Format

Share Document