Preparation and Characterization of PVDF Hydrophobic Membrane

2011 ◽  
Vol 221 ◽  
pp. 338-342 ◽  
Author(s):  
Hua Feng Zhang ◽  
Yu Zhong Zhang ◽  
Li Gang Lin ◽  
Xiao Li Ding ◽  
Hong Li

Polyvinylidene fluoride (PVDF) hydrophobic membrane has been prepared by phase inversion method. The effects of concentration of PVDF, different processes of preparations, and different surface roughness on hydrophobic capability of membrane surface (water contact angle, WCA) have been investigated. The results showed that, hydrophobic ability of PVDF membranes decreased with the increasing concentration of PVDF. WCA of membrane prepared by was increasing. Membrane surface hydrophobic ability increased with the increasing surface roughness. The contact angle of membrane comes to 141° with dry process and 10% PVDF concentration.

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 563
Author(s):  
Muhammad Zahid ◽  
Anum Rashid ◽  
Saba Akram ◽  
H. M. Fayzan Shakir ◽  
Zulfiqar Ahmad Rehan ◽  
...  

In this study, cellulose acetate (CA) was blended with sulfonated graphene oxide (SGO) nanomaterials to endow a nanocomposite membrane for wastewater treatment with improved hydrophilicity and anti-biofouling behavior. The phase inversion method was employed for membrane fabrication using tetrahydrofuran (THF) as the solvent. The characteristics of CA-SGO-doped membranes were investigated through thermal analysis, contact angle, SEM, FTIR, and anti-biofouling property. Results indicated that anti-biofouling property and hydrophilicity of CA-SGO nanocomposite membranes were enhanced with addition of hydrophilic SGO nanomaterials in comparison to pristine CA membrane. FTIR analysis confirmed the successful decoration of SGO groups on CA membrane surface while revealing its morphological properties through SEM analysis. Thermal analysis performed using DSC confirmed the increase in thermal stability of CA-SGO membranes with addition of SGO content than pure CA membrane.


2019 ◽  
Vol 69 (2) ◽  
pp. 122-133 ◽  
Author(s):  
Juan Xiong ◽  
Yexia Gong ◽  
Cong Ma ◽  
Xingtao Zuo ◽  
Jiajie He

Abstract The hydrophilic and antimicrobial polyvinylidene fluoride (PVDF) membrane was fabricated by phase inversion method. The prepared membranes with various concentrations of ZnO nanoparticles (NPs) were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and membrane properties were investigated in terms of hydrophilicity, water flux, BSA solution filtration experiments, etc. Antibacterial testing was also performed to examine the practicability of the PVDF-ZnO membranes in overcoming biofouling. The results of FTIR and XRD confirmed the presence of ZnO NPs in the polymer matrix. The membrane performance demonstrated the significance of hydrophilic nanoparticles towards the enhancement of membrane properties. The optimum amount of ZnO NPs was 1.5 wt% with a lower contact angle as well as highest flux and lowest filtration resistance. The presence of ZnO NPs in the membrane matrix exhibited a strong antibacterial activity increased with the increasing ZnO NPs' content. Incorporation of ZnO NPs into PVDF membranes may have great potential in developing high-performance antifouling membranes for separation process.


2020 ◽  
Vol 10 (6) ◽  
pp. 2015 ◽  
Author(s):  
Yeojoon Yoon ◽  
Homin Kye ◽  
Woo Seok Yang ◽  
Joon-Wun Kang

Graphene is a single atomic plane of graphite, and it exhibits unique electronic, thermal, and mechanical properties. Exfoliated graphene oxide (GO) contains various hydrophilic functional groups, such as hydroxyl, epoxide, and carboxyl groups, that can modify the hydrophobic characteristics of a membrane surface. Though reduced graphene oxide (rGO) has fewer functional groups than GO, its associated sp2 structures and physical properties can be recovered. A considerable amount of research has focused on the use of GO to obtain a pristine graphene material via reduction processes. In this study, polysulfone (PSf) and polyvinylidene fluoride (PVDF) membranes that were blended with GO and rGO, respectively, were fabricated by using the immersion phase inversion method and an n-methylpyrrolidone (NMP) solvent. Results showed that the graphene nanomaterials, GO and rGO, can change the pore morphology (size and structure) of both PSf and PVDF membranes. The optimum content of both was then investigated, and the highest flux enhancement was observed with the 0.10 wt% GO-blended PSf membrane. The presence of functional groups in GO within prepared PSf and PVDF membranes alters the membrane characteristics to hydrophilic. An antifouling test and rejection efficiency evaluation also showed that the 0.10 wt% membrane provided the best performance.


2011 ◽  
Vol 418-420 ◽  
pp. 639-642
Author(s):  
Tao Yuan ◽  
Jian Qiang Meng ◽  
Guo Rong Cai ◽  
Yu Feng Zhang

An amphiphilic graft copolymer was obtained via atom transfer radical polymerization (ATRP) of methacrylate (MMA) initiated directly by polyvinylidene fluoride (PVDF). Hydrophilic PVDF membranes were prepared by immersion precipitation of PVDF-g-PMMA and PVDF blend solutions. The chemical structure and the molecular weight were characterized by 1H-NMR and GPC. The hydrophilicity of membrane surfaces were characterized by static water contact angle. Top surface and cross-section of membranes were observed by Field Emission Scanning Electron Microscope (FESEM). The results demonstrated the water contact angle of the membrane surface decreased from 89°to 67°, indicating enhanced hydrophilicity; the pure water flux water firstly decreased and then increased up to 1.7 times of the PVDF membrane. The retention of PEG (Mn=6000) could be maintained at 93%-95%.


2018 ◽  
Vol 18 (2) ◽  
pp. 257 ◽  
Author(s):  
Nita Kusumawati ◽  
Pirim Setiarso ◽  
Maria Monica Sianita ◽  
Supari Muslim

Asymmetric polysulfone (PSf) membrane is prepared using phase inversion method and blending with polyvinylidene fluoride (PVDF) on the gauze solid support. Casting solution composition optimization has been done to get PSf/PVDF membrane with best characteristics and permeability. The result shows that blending on PSf with PVDF polymer using phase inversion method has been very helpful in creating an asymmetric porous membrane. Increased level of PVDF in casting solution has increased the formation of asymmetry structure and corresponding flux membrane. The result from thermal test using Differential Scanning Calorimetry (DSC)-Thermal Gravimetric Analysis (TGA) shows the resistance of the membrane to temperature 460 °C. Membrane resistance against acid looks from undetectable changes on infrared spectra after immersion process in H2SO4 6–98 v/v%. While membrane color changes from white to brownish and black is detected after the immersion process in sodium hydroxide (NaOH) 0.15–80 w/v%.


2021 ◽  
Vol 21 (8) ◽  
pp. 4492-4497
Author(s):  
Eun Ae Shin ◽  
Gye Hyeon Kim ◽  
Jeyoung Jung ◽  
Sang Bong Lee ◽  
Chang Kee Lee

Hydrophobic ceramic coatings are used for a variety of applications. Generally, hydrophobic coating surfaces are obtained by reducing the surface energy of the coating material or by forming a highly textured surface. Reducing the surface energy of the coating material requires additional costs and processing and changes the surface properties of the ceramic coating. In this study, we introduce a simple method to improve the hydrophobicity of ceramic coatings by implementing a textured surface without chemical modification of the surface. The ceramic coating solution was first prepared by adding cellulose nanofibers (CNFs) and then applied to a polypropylene (PP) substrate. The surface roughness increased as the amount of added CNFs increased, increasing the water contact angle of the surface. When the amount of CNFs added was corresponding to 10% of the solid content, the surface roughness average of the area was 43.8 μm. This is an increase of approximately 140% from 3.1 μm (the value of the surface roughness of the surface without added CNFs). In addition, the water contact angle of the coating with added CNF increased to 145.0°, which was 46% higher than that without the CNFs. The hydrophobicity of ceramic coatings with added CNFs was better because of changes in the surface topography. After coating and drying, the CNFs randomly accumulated inside the ceramic coating layer, forming a textured surface. Thus, hydrophobicity was improved by implementing a rugged ceramic surface without revealing the surface of the CNFs inside the ceramic layer.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 471 ◽  
Author(s):  
Martha Claros ◽  
Milena Setka ◽  
Yecid P. Jimenez ◽  
Stella Vallejos

Non-modified (ZnO) and modified (Fe2O3@ZnO and CuO@ZnO) structured films are deposited via aerosol assisted chemical vapor deposition. The surface modification of ZnO with iron or copper oxides is achieved in a second aerosol assisted chemical vapor deposition step and the characterization of morphology, structure, and surface of these new structured films is discussed. X-ray photoelectron spectrometry and X-ray diffraction corroborate the formation of ZnO, Fe2O3, and CuO and the electron microscopy images show the morphological and crystalline characteristics of these structured films. Static water contact angle measurements for these structured films indicate hydrophobic behavior with the modified structures showing higher contact angles compared to the non-modified films. Overall, results show that the modification of ZnO with iron or copper oxides enhances the hydrophobic behavior of the surface, increasing the contact angle of the water drops at the non-modified ZnO structures from 122° to 135° and 145° for Fe2O3@ZnO and CuO@ZnO, respectively. This is attributed to the different surface properties of the films including the morphology and chemical composition.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1379
Author(s):  
Daniel Breite ◽  
Marco Went ◽  
Andrea Prager ◽  
Mathias Kühnert ◽  
Agnes Schulze

A major goal of membrane science is the improvement of the membrane performance and the reduction of fouling effects, which occur during most aqueous filtration applications. Increasing the surface hydrophilicity can improve the membrane performance (in case of aqueous media) and decelerates membrane fouling. In this study, a PES microfiltration membrane (14,600 L m−2 h−1 bar−1) was hydrophilized using a hydrophilic surface coating based on amide functionalities, converting the hydrophobic membrane surface (water contact angle, WCA: ~90°) into an extremely hydrophilic one (WCA: ~30°). The amide layer was created by first immobilizing piperazine to the membrane surface via electron beam irradiation. Subsequently, a reaction with 1,3,5-benzenetricarbonyl trichloride (TMC) was applied to generate an amide structure. The presented approach resulted in a hydrophilic membrane surface, while maintaining permeance of the membrane without pore blocking. All membranes were investigated regarding their permeance, porosity, average pore size, morphology (SEM), chemical composition (XPS), and wettability. Soxhlet extraction was carried out to demonstrate the stability of the applied coating. The improvement of the modified membranes was demonstrated using dead-end filtration of algae solutions. After three fouling cycles, about 60% of the initial permeance remain for the modified membranes, while only ~25% remain for the reference.


Sign in / Sign up

Export Citation Format

Share Document