Phase Transition in Niobophosphate Glass-Ceramic

2011 ◽  
Vol 222 ◽  
pp. 259-262 ◽  
Author(s):  
Agnese Stunda ◽  
Nina Mironova-Ulmane ◽  
Natalija Borodajenko ◽  
Liga Berzina-Cimdina

Phase transition during crystallization of glass to glass-ceramic in system P2O5-CaO-Nb2O5-Na2O was studied. Several heating rates were compared – 1, 2, 5, 11 and 20°Cmin-1. DTA, XRD, FTIR and Raman analyses were performed. Niobophosphate glass-ceramic is found to form utterly different crystalline phases depending on maximal heating temperature, heating rate and time of maximal temperature maintenance. Crystallization temperatures of the same phases are strongly dependent on heating rate, while crystallinity of obtained phases is not. At lower temperatures poorly crystalline phosphates (Ca3(PO4)2, Ca10Na(PO4)7, Ca2P2O7) and niobates (NaNbO3 and Nb2O5) are identified. At higher temperatures a large amount of well crystalline niobophosphate (Na4(Nb8P4O32) and Ca2P2O7 forms. With increasing amount of Na4(Nb8P4O32), amount of NaNbO3 and Nb2O5 decreases.

2007 ◽  
Vol 539-543 ◽  
pp. 4208-4213
Author(s):  
Jacobo J. Cardozo ◽  
A.L. Rivas ◽  
R. Colas

The present investigation evaluates the effect of static annealing variables on the grain structure and mechanical properties of a 0.04 %C-Al killed steel. The experimental variables selected were the heating rate and the initial heating temperature. The results showed that an increase in the initial heating temperature and heating rates inferior to 500°C and 100°C/h, respectively, do not have a major influence in the grain structure of the material. These annealing conditions lead to a full "pancake" type of microstructure of the recrystallized ferrite grain, and as consequence, the mechanical properties of the material are in the intervals required for deep drawing applications.


2018 ◽  
Vol 786 ◽  
pp. 3-9
Author(s):  
Matias Jaskari ◽  
Antti Järvenpää ◽  
Pentti L. Karjalainen

Typical applications of ferritic stainless steels require good formability of the material that is highly dependent on the processing route. In this study, the effects of the heating rate and peak heating temperature on the texture and deep drawability (R-value) of a 78% cold rolled, stabilized 18Cr (AISI 441) ferritic stainless steel were studied. Pieces of cold rolled sheet were heated in a Gleeble 3800 simulator at the heating rates of 25 °C/s and 500 °C/s to various temperatures up to 1150 °C for 10 s holding before cooling at a rate of 35 °C/s. Microstructures were characterized and the texture of the annealed samples determined by the electron backscatter diffraction method. It was established that the high heating rate of 500 °C/s promotes the nucleation of grains with the near {111}<uvw> orientations during the early state of the recrystallization. The maximum texture intensities were found at {554}<225>. The more effective nucleation of these grains resulted in a finer grain size and an increased intensity of the gamma-fibre texture which led to enhanced R-values. At high peak temperatures, the intense grain growth took place.


2019 ◽  
Vol 9 (9) ◽  
pp. 1813 ◽  
Author(s):  
Xuhui Li ◽  
Kunquan Li ◽  
Chunlei Geng ◽  
Hamed El Mashad ◽  
Hua Li ◽  
...  

In this research, artemisia selengensis was used to produce biochar via microwave pyrolysis. The influence of pyrolysis temperature, heating rates, temperature holding time and additive on the biochar yield and adsorbability were all investigated. The results suggest that the biochar yield decreased with the increase of pyrolysis temperature while the adsorbability of the biochar increased with an increase of the pyrolysis temperature; the biochar yield and its adsorbability could achieve the desired value when the heating rate and temperature holding time were in a specific scope; the biochar yield decreased when an additive was added; the adsorbability of the biochar could be increased by adding ZnCl2 (metal chloride) and Na2CO3 (metal carbonate). According to the orthogonal experiments, the optimal conditions for biochar production were: pyrolysis temperature 550 °C, heating rate 2 °C/s, temperature holding time 15 min, without additive.


2013 ◽  
Vol 749 ◽  
pp. 260-267 ◽  
Author(s):  
Yin Gang Liu ◽  
Miao Quan Li ◽  
Xiao Ling Dang

The growth behavior of 300M steel was investigated on a Gleeble-3500 simulator at the heating temperatures ranging from 1273 K to 1453 K and the heating rates ranging from 0.83 K/s to 40 K/s. The grain size of austenite was measured by using SISC IAS V8.0 image analysis software on Olympus PMG3 microscope. The experimental results showed that the coarse grains of austenite occurred at the heating temperature above 1413 K and the grain size of austenite increased with the increasing of heating temperature and decreased with the increasing of heating rate. The grain boundaries of austenite became flat and the angel of grain boundaries tended to 120˚ with the increasing of heating temperature. The grain boundaries of austenite increased and changed from flat to bend with the increasing of heating rate.


2013 ◽  
Vol 773-774 ◽  
pp. 741-749 ◽  
Author(s):  
Fu Ren Xiao ◽  
Xiu Lin Han ◽  
Yan Mei Liu ◽  
Guang Ping Lu ◽  
Bo Liao

The effects of heating rate, heating temperature and cooling rate on the microstructures and mechanical properties of four pipeline steels for high frequency electric resistance welded pipe have been studied by using a Gleeble-3500 thermo-mechanical simulator. The results show that the heating rates have an effect on austenizing phase transformation temperature (Ac1 and Ac3). It shows that there is a linear relationship between heating rate and austennizing temperature (Ac1 and Ac3) in the range of tested heating rate. With the heating temperature increasing, the strength property goes up, on the contrary, the strength begins to go down when the heating temperature exceeds 900 °C, then a lowest strength point appears on 925 °C in the testing scope. As the further increase of the heating temperature, the strength goes up again. Moreover, the cooling rate has a great effect on the microstructure and the mechanical properties. With the decrease of cooling rate, the strength decrease significantly, meanwhile, the microstructure becomes coarse, even the banded structure can be found. As the conclusion, the optimum heating temperature is 950 °C, and cooling rate is from 8.5 to 13 °C/s.


2021 ◽  
Vol 13 (12) ◽  
pp. 6739
Author(s):  
Darko Landek ◽  
Lidija Ćurković ◽  
Ivana Gabelica ◽  
Mihone Kerolli Mustafa ◽  
Irena Žmak

In this work, alumina (Al2O3) ceramics were prepared using an environmentally friendly slip casting method. To this end, highly concentrated (70 wt.%) aqueous suspensions of alumina (Al2O3) were prepared with different amounts of the ammonium salt of a polycarboxylic acid, Dolapix CE 64, as an electrosteric dispersant. The stability of highly concentrated Al2O3 aqueous suspensions was monitored by viscosity measurements. Green bodies (ceramics before sintering) were obtained by pouring the stable Al2O3 aqueous suspensions into dry porous plaster molds. The obtained Al2O3 ceramic green bodies were sintered in the electric furnace. Analysis of the effect of three sintering parameters (sintering temperature, heating rate and holding time) on the density of alumina ceramics was performed using the response surface methodology (RSM), based on experimental data obtained according to Box–Behnken experimental design, using the software Design-Expert. From the statistical analysis, linear and nonlinear models with added first-order interaction were developed for prediction and optimization of density-dependent variables: sintering temperature, heating rate and holding time.


2013 ◽  
Vol 788 ◽  
pp. 57-60
Author(s):  
Chun Cao ◽  
Chun Dong Zhu ◽  
Chen Fu

Warm pressing forming technology has been gradually applied to the forming of automotive friction materials. How to ensure product performance to achieve the target at the same time achieve the maximum energy saving is the research focus of this study. In this paper, by using finite element method, the field of automotive friction materials in warm pressing forming was analyzed, reveals the relationship between the temperature field and the heating temperature/heating time. Furthermore, the energy consumption was analyzed and compared it with hot pressing forming process. The results will have significant guiding to the process optimization in warm pressing forming.


1996 ◽  
Vol 11 (9) ◽  
pp. 2368-2375 ◽  
Author(s):  
Hossein Maleki ◽  
Lawrence R. Holland ◽  
Gwyn M. Jenkins ◽  
R. L. Zimmerman ◽  
Wally Porter

Polymeric carbon artifacts are particularly difficult to make in thick section. Heating rate, temperature, and sample thickness determine the outcome of carbonization of resin leading to a glassy polymeric carbon ware. Using wedge-shaped samples, we found the maximum thickness for various heating rates during gelling (300 K–360 K), curing (360 K–400 K), postcuring (400 K–500 K), and precarbonization (500 K–875 K). Excessive heating rate causes failure. In postcuring the critical heating rate varies inversely as the fifth power of thickness; in precarbonization this varies inversely as the third power of thickness. From thermogravimetric evidence we attribute such failure to low rates of diffusion of gaseous products of reactions occurring within the solid during pyrolysis. Mass spectrometry shows the main gaseous product is water vapor; some carboniferous gases are also evolved during precarbonization. We discuss a diffusion model applicable to any heat-treatment process in which volatile products are removed from solid bodies.


2010 ◽  
Vol 168-170 ◽  
pp. 564-569
Author(s):  
Guang Lin Yuan ◽  
Jing Wei Zhang ◽  
Jian Wen Chen ◽  
Dan Yu Zhu

This paper makes an experimental study of mechanical properties of high-strength pumpcrete under fire, and the effects of heating rate, heating temperature and cooling mode on the residual compressive strength(RCS) of high-strength pumpcrete are investigated. The results show that under air cooling, the strength deterioration speed of high-strength concrete after high temperature increases with the increase of concrete strength grade. Also, the higher heating temperature is, the lower residual compressive strength value is. At the same heating rate (10°C/min), the residual compressive strength of C45 concrete after water cooling is a little higher than that after air cooling; but the test results are just the opposite for C55 and C65 concrete. The strength deterioration speed of high-strength concrete after high temperature increases with the increase of heating rate, but not in proportion. And when the heating temperature rises up between 200°C and 500°C, heating rate has the most remarkable effect on the residual compressive strength of concrete. These test results provide scientific proofs for further evaluation and analysis of mechanical properties of reinforced-concrete after exposure to high temperatures.


2007 ◽  
Vol 7 (20) ◽  
pp. 5391-5400 ◽  
Author(s):  
K. M. Nissen ◽  
K. Matthes ◽  
U. Langematz ◽  
B. Mayer

Abstract. We introduce the improved Freie Universität Berlin (FUB) high-resolution radiation scheme FUBRad and compare it to the 4-band standard ECHAM5 SW radiation scheme of Fouquart and Bonnel (FB). Both schemes are validated against the detailed radiative transfer model libRadtran. FUBRad produces realistic heating rate variations during the solar cycle. The SW heating rate response with the FB scheme is about 20 times smaller than with FUBRad and cannot produce the observed temperature signal. A reduction of the spectral resolution to 6 bands for solar irradiance and ozone absorption cross sections leads to a degradation (reduction) of the solar SW heating rate signal by about 20%. The simulated temperature response agrees qualitatively well with observations in the summer upper stratosphere and mesosphere where irradiance variations dominate the signal. Comparison of the total short-wave heating rates under solar minimum conditions shows good agreement between FUBRad, FB and libRadtran up to the middle mesosphere (60–70 km) indicating that both parameterizations are well suited for climate integrations that do not take solar variability into account. The FUBRad scheme has been implemented as a sub-submodel of the Modular Earth Submodel System (MESSy).


Sign in / Sign up

Export Citation Format

Share Document