Experiment and Mechanism Study on Effect of Water/Binder and Fly Ash on Mechanical Properties of HPC

2011 ◽  
Vol 255-260 ◽  
pp. 3404-3410
Author(s):  
Shuang Xi Li ◽  
An Quan Xu ◽  
Xin Jun Tang ◽  
Quan Hu

It takes on the technical and economic double benefits that fly ash taking the place of cement. However, water/binder of modern concrete is generally low; the research on the concrete performance which is based on large water/binder is no longer suitable for analysis of modern concrete. As to this problem, using different proportions of W/B and FA dosage as influencing factors, specimen is compounded for the compressive strength test. Then, mechanical properties of HPC are studied systematically. Based on this, macro-performance is analyzed from a micro-mechanism point of view through taking the electron micrograph. As the study shows, strength of HPC mixed with fly ash has low characteristics at early period while high ones at later period. At later hydration, fly ash effect plays a significant role, the growth rate of concrete strength increases as the increase of FA dosage. Compressive strength of concrete decreases as the increase of W/B and FA dosage. When the W/B is high, compressive strength is not sensitive to the change of W/B and FA dosage; but when the W/B decreases from 0.30 to 0.25, the concrete strength transition occurs. The influence of W/B on concrete compressive strength is more significant than that of the FA dosage; in the preparation of HPC, fly ash can be added more and cement is added less relatively by decreasing the W/B, displaying the role of micro-aggregate filling and modification, improving the strength and other performance of concrete. The study on micro-mechanism proves well the macro-phenomena above.

2019 ◽  
Vol 8 (4) ◽  
pp. 8336-8342

From decades it has been recognized that Geopolymer will considerably replace the role of cement in the construction industry. In general, Geopolymer exhibits the property of the peak compressive strength, minimal creep and shrinkage. In this current research paper, Geopolymer mortar is prepared by using GGBS and Fly ash. The mix proportions are of (100-60)%GGBS with Fly ash by 10% replacement. The alkali activators Na0H and Na2Sio3 are used in the study for two different molarities of 4&8. The ratio to Sodium silicates to sodium hydroxide is maintained from 1.5, 2, 2.5 & 3 were used. Mortars are prepared and studied the effect of molarities of alkali activators in their setting times and strengths


2010 ◽  
Vol 113-116 ◽  
pp. 1293-1296
Author(s):  
Yu Zhu ◽  
Ying Zi Yang ◽  
Hong Wei Deng ◽  
Yan Yao

In order to investigate the mechanical properties of cementitious composites (ECC) cured at 60°C, four-point bending test and compressive strength test are employed to analyze the effect of fly ash on the properties of ECC. The replacement ratio of cement with fly ash is 50%, 70% and 80%, respectively. The test results indicate that ECC with high volume fly ash still remain the characteristic of pseudo-strain hardening and the deflection of ECC increases remarkably by adding more fly ash. The observations of ECC indicate that the crack width is relatively smaller for higher volume fly ash ECC. Meanwhile, compressive strength of ECC specimens with 80% fly ash can reach to 70MPa. This is helpful to produce precast ECC with high volume of fly ash.


Foamed concrete is one of the lightweight concretes that has been investigated widely due to its potential use as a building element as well as due to its benefits, which are low in self weight, more durable, self-compacting and has excellent thermal insulation properties. The major limitation of this material is because of its characteristics which are weak in tension and suffers high shrinkage. Therefore, the introduction of fiber in foamed concrete becomes a popular research focus among researchers in conducting a study since it can aid in overcoming this problem. Thus, this research was performed to investigate the mechanical properties of foamed concrete with the enclosure of fibermesh. Fibermesh with a size of 160g weight per square meter was examined on three densities of foamed concrete (800kg/m3, 1100kg/m3, 1400 kg/m3). The cement-sand used in this study was constantly maintained at 1:1.5 and the water to cement ratio was fixed at 0.45. Moreover, this study also explored the improvement of foamed concrete strength from without any addition of fiber (control) to 1, 2, and 3 layer(s) of fibermesh enclosure. There were three experimental tests conducted to determine the foamed concrete strength which are compressive strength test, flexural test, and splitting tensile test. The experimental results showed that, foamed concrete gave the highest strength results at a density of 1400kg/m3 with the \ enclosure of 3 layers of fibermesh while the lowest strength was attained at 800kg/m3 density with no addition of fiber (control specimen). The positive improvement in foamed concrete strength obviously showed after enclosure of fibermesh compared to the plain foamed concrete, where at density of 1400kg/m3 with 3 layers enclosure of fibermesh, 96% of changes was recorded in the compressive strength test while 332% was shown in the flexural strength test and 421% was recorded in the splitting tensile test.


2020 ◽  
Vol 71 (7) ◽  
pp. 775-788
Author(s):  
Quyet Truong Van ◽  
Sang Nguyen Thanh

The utilisation of supplementary cementitious materials (SCMs) is widespread in the concrete industry because of the performance benefits and economic. Ground granulated blast furnace slag (GGBFS) and fly ash (FA) have been used as the SCMs in concrete for reducing the weight of cement and improving durability properties. In this study, GGBFS at different cement replacement ratios of 0%, 20%, 40% and 60% by weight were used in fine-grained concrete. The ternary binders containing GGBFS and FA at cement replacement ratio of 60% by weight have also evaluated. Flexural and compressive strength test, rapid chloride permeability test and under-water abrasion test were performed. Experimental results show that the increase in concrete strength with GGBFS contents from 20% to 40% but at a higher period of maturity (56 days and more). The chloride permeability the under-water abrasion reduced with the increasing cement replacement by GGBFS or a combination of GGBFS and FA


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2694 ◽  
Author(s):  
Shansuo Zheng ◽  
Lihua Niu ◽  
Pei Pei ◽  
Jinqi Dong

In order to evaluate the deterioration regularity for the mechanical properties of brick masonry due to acid rain corrosion, a series of mechanical property tests for mortars, bricks, shear prisms, and compressive prisms after acid rain corrosion were conducted. The apparent morphology and the compressive strength of the masonry materials (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), the shear behavior of the masonry, and the compression behavior of the masonry were analyzed. The resistance of acid rain corrosion for the cement-lime mortar prisms was the worst, and the incorporation of fly ash into the cement mortar did not improve the acid rain corrosion resistance. The effect of the acid rain corrosion damage on the mechanical properties for the brick was significant. With an increasing number of acid rain corrosion cycles, the compressive strength of the mortar prisms, and the shear and compressive strengths of the brick masonry first increased and then decreased. The peak stress first increased and then decreased whereas the peak strain gradually increased. The slope of the stress-strain curve for the compression prisms gradually decreased. Furthermore, a mathematical degradation model for the compressive strength of the masonry material (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), as well as the shear strength attenuation model and the compressive strength attenuation model of brick masonry after acid rain corrosion were proposed.


2021 ◽  
Vol 11 (7) ◽  
pp. 3032
Author(s):  
Tuan Anh Le ◽  
Sinh Hoang Le ◽  
Thuy Ninh Nguyen ◽  
Khoa Tan Nguyen

The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products.


2016 ◽  
Vol 857 ◽  
pp. 400-404
Author(s):  
Tian Yu Xie ◽  
Togay Ozbakkaloglu

This paper presents the results of an experimental study on the behavior of fly ash-, bottom ash-, and blended fly and bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. Four bathes of GPC were manufactured to investigate the influence of the fly ash-to-bottom ash mass ratio on the microstructure, compressive strength and elastic modulus of GPC. All the results indicate that the mass ratio of fly ash-to-bottom ash significantly affects the microstructure and mechanical properties of GPCs


2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


2007 ◽  
Vol 72 (6) ◽  
pp. 591-604 ◽  
Author(s):  
Gordana Stefanovic ◽  
Ljubica Cojbasic ◽  
Zivko Sekulic ◽  
Srdjan Matijasevic

Fly ash (FA) can be used in cement mixtures with certain limitations. The problem of the mentioned mixtures lies in the insufficient activity of the particles of FA in the reactions which are important for the establishment of the mechanical characteristics of cement. This is particularly true for the hydration reactions. As a result of this, cement pastes formed by mixing ash and clinker have worse characteristics compared to those of pure Portland cement (PC), especially in the early period of setting. As is well known, FA can be a good solution for the neutralization of the negative effects generated due to the creation of free Ca(OH)2 during the hydration of PC, provided that the problems with the low activity of FAare overcome. For the experiments in this study, a mixture of Portland cement and fly ash was used, the content of ash in the mixture being 30 % and 50 %. Mechanical activation was performed in a vibrating ring mill. The goal of this study was to demonstrate, through experimental results, that during the mechanical activation of a PC and FA mixture, the components in the mixture which mostly affect the direction, rate and range of hydration reactions occurring in the mixture had been activated. The values of the compressive strength of the activated and non-activated mixtures and the changes of their specific surface area proved that during the grinding process, the mixture PC+FA had been mechanically activated. The highest increase of compressive strength was achieved in the early period of setting, which indicates an improvement in the early hydration of the mixture. XRD, DTA and TG analyses showed that the alite (C3S) and belite (C2S) from the PC and a part of the fly ash were activated. .


2013 ◽  
Vol 275-277 ◽  
pp. 2107-2111
Author(s):  
Qiu Lin Zou ◽  
Jun Li ◽  
Zhen Yu Lai

Barite concrete with density grade of 3 and strength grade of C30 was prepared by mixing with different fineness of fly ash. The workability, mechanical properties and long-term high temperature performance of the prepared barite concrete were researched. Results show that the workability of barite concrete is improved by mixing with fly ash, and no segregation of mixture has been observed. The apparent density and 3d, 28d compressive strength of barite concrete are decreased obviously after mixing with fly ash. But with the increasing of the fineness of fly ash, the apparent density and 3d, 28d compressive strength of barite concrete have a slight increase. High temperature residual compressive strength is decreased with the increasing of temperature. The cycle times of heat treatment at 400°C only has a little effect on residual compressive strength of barite concrete.


Sign in / Sign up

Export Citation Format

Share Document