Effect of Heat Treatment on Microstructures and Properties of Mg-9Gd-4Y-0.3Zr Alloy

2007 ◽  
Vol 26-28 ◽  
pp. 167-170
Author(s):  
Su Juan Yao ◽  
W.X. Li ◽  
Sheng Yang ◽  
Dan Qing Yi

microstructures, aging hardness, mechanical properties of Mg-9Gd-4Y-0.3Zr alloys were investigated. The microstructure is a typical dendritic structure of as-cast sample, The aging test of extruded samples were carried at a temperature rang of 200-300°C and at a different aging time. The aging peak hardness is about 120HV, tensile strength was tested at temperature 25°C, 200°C, 250°C and 300°C, tensile strengths are 375 Mpa, 364 Mpa, 329 Mpa, 286 Mpa respectively, the maximum elongation is 13.32% at 300°C. The fracture mode is mainly microvoid coalescence fracture combination the brittle cleavage fracture at room temperature, and microvoid coalescence fracture at 200-300°C.

2018 ◽  
Vol 284 ◽  
pp. 615-620 ◽  
Author(s):  
R.M. Baitimerov ◽  
P.A. Lykov ◽  
L.V. Radionova

TiAl6V4 titanium base alloy is widely used in aerospace and medical industries. Specimens for tensile tests from TiAl6V4 with porosity less than 0.5% was fabricated by selective laser melting (SLM). Specimens were treated using two heat treatment procedures, third batch of specimens was tested in as-fabricated statement after machining. Tensile tests were carried out at room temperature. Microstructure and mechanical properties of SLM fabricated TiAl6V4 after different heat treatments were investigated.


2006 ◽  
Vol 114 ◽  
pp. 91-96 ◽  
Author(s):  
Maxim Yu. Murashkin ◽  
M.V. Markushev ◽  
Julia Ivanisenko ◽  
Ruslan Valiev

The effects of equal channel angular pressing (ECAP), further heat treatment and rolling on the structure and room temperature mechanical properties of the commercial aluminum alloys 6061 (Al-0.9Mg-0.7Si) and 1560 (Al-6.5Mg-0.6Mn) were investigated. It has been shown that the strength of the alloys after ECAP is higher than that achieved after conventional processing. Prior ECAP solution treatment and post-ECAP ageing can additionally increase the strength of the 6061 alloy. Under optimal ageing conditions a yield strength (YS) of 434 MPa and am ultimate tensile strength (UTS) of 470 MPa were obtained for the alloy. Additional cold rolling leads to a YS and UTS of 475 and 500 MPa with 8% elongation. It was found that the post-ECAP isothermal rolling of the 1560 alloy resulted in the formation of a nano-fibred structure and a tensile strength (YS = 540 MPa and UTS = 635 MPa) that has never previously been observed in commercial non-heat treatable alloys.


2017 ◽  
Vol 17 (4) ◽  
pp. 73-78 ◽  
Author(s):  
F. Kahrıman ◽  
M. Zeren

Abstract In this study, Al-0.80Mg-0.85Si alloy was modified with the addition of 0.3 wt.-% zirconium and the variation of microstructural features and mechanical properties were investigated. In order to produce the billets, vertical direct chill casting method was used and billets were homogenized at 580 °C for 6 h. Homogenized billets were subjected to aging practice following three stages: (i) solution annealing at 550 °C for 3 h, (ii) quenching in water, (iii) aging at 180 °C between 0 and 20 h. The hardness measurements were performed for the alloys following the aging process. It was observed that peak hardness value of Al-0.80Mg-0.85Si alloy increased with the addition of zirconium. This finding was very useful to obtain aging parameters for the extruded hollow profiles which are commonly used in automotive industry. Standard tensile tests were applied to aged profiles at room temperature and the results showed that modified alloy had higher mechanical properties compared to the non-modified alloy.


2021 ◽  
Vol 1016 ◽  
pp. 906-910
Author(s):  
Xin Hua Min ◽  
Cheng Jin

In this paper,effect of the different forging processes on the microstructure and mechanical properties of the flat flat billets of TA15 titanium alloy was investigated.The flat billiets of 80 mm×150 mm×L sizes of TA15 titanium alloy are produced by four different forging processes.Then the different microstrure and properties of the flat billiets were obtained by heat treatment of 800 °C~850 °C×1 h~4h.The results show that, adopting the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling, the primary αphases content is just 10%, and there are lots of thin aciculate phases on the base. This microstructure has both high strength at room temperature and high temperature, while the properties between the cross and lengthwise directions are just the same. So the hot processing of the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling is choosed as the ideal processing for production of aircraft frame parts.


Metals ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Shi-Hong Zhang ◽  
Neng-Yong Ye ◽  
Ming Cheng ◽  
Hong-Wu Song ◽  
Hong-Wei Zhou ◽  
...  

2019 ◽  
Vol 54 (7) ◽  
pp. 981-997
Author(s):  
Semegn Cheneke ◽  
D Benny Karunakar

In this research, microstructure and mechanical properties of stir rheocast AA2024/TiB2 metal matrix composite have been investigated. The working temperature was 640℃, which was the selected semisolid temperature that corresponds to 40% of the solid fraction. Two weight percentage, 4 wt%, and 6 wt% of the TiB2 reinforcements were added to the matrix. The field emission scanning electron microscope micrographs of the developed composites showed a uniform distribution of the particles in the case of the 2 wt% and 4 wt% of the reinforcements. However, the particles agglomerated as the weight percentages of the reinforcement increases to 6%. The optical microscope of the liquid cast sample showed the dendritic structure, whereas the rheocast samples showed a globular structure. The X-ray diffraction analysis confirmed the distribution of the reinforcements in the matrix and the formation of some intermetallic compounds. Mechanical properties significantly improved by the addition of the reinforcements in the matrix. An increase in tensile strength of 13.3%, 40%, 28%, and 5% was achieved for the unreinforced rheocast sample, 2 wt%, 4 wt%, and 6 wt% reinforced rheocast samples respectively, compared to the liquid cast sample. An increase in 20% of hardness was attained for the composite with 2 wt% TiB2 compared to the liquid cast sample. According to the fractography analysis, small dimples were observed on the fractured surface of the unreinforced rheocast sample, whereas small and large voids were dominant on the fractured surface of the 2 wt% composite, which shows the ductile fracture mode.


2017 ◽  
Vol 898 ◽  
pp. 476-479
Author(s):  
Jin Xia Yang ◽  
Yuan Sun ◽  
Dong Ling Zhou

The effects of HIP process on microstructure and mechanical properties of IN792 cast superalloy were studied. The results showed that HIP process produced more uniform and finer cubic γ′ than standard heat treatment. The difference of the mechanical properties should be caused by the microstructure changes. HIP process leads the homogeneous distribution of γ′ at dendritic arm and interdendritic area, and improved UTS and YS of tested alloy at 550°C. However, it played no role in increasing UTS and YS at room temperature and stress-rupture lives of 760°C/662MPa and decreased stress-rupture lives of 982°C/186MPa.


2016 ◽  
Vol 849 ◽  
pp. 570-579
Author(s):  
Qiang Huang ◽  
Jin Xia Song ◽  
Qing Li ◽  
Wei Peng Ren ◽  
Xin Guang Guan ◽  
...  

The microstructures and mechanical properties of superalloy K465 under different heat treatment, including as as-cast, solution treatment and aging, were investigated. The results showed that γ' precipitates in as-cast condition exhibited two kinds of morphologies of fine regular cuboidal shape at dendritic arm and coarse irregular form in interdendritic region. MC carbides decomposed into M6C carbides partly after 1210°C/4h solution treatment. The high temperature stress-rupture life can be improved obviously with the increasing cooling rate. When cooling rate was lower than 70°C/min, the room temperature tensile elongation increased with cooling rate increasing. When cooling rate was higher than 90°C/min the room temperature tensile elongation decreased with cooling rate increasing. The proper cooling rate of 70oC/min~90oC/min is advantageous for the achievement of excellent comprehensive properties. When aging treatments continued the regularization of γ' resulted in the improvement of stress-rupture life and the reduction of tensile elongation. The mechanical property gap between the solution treatment and aging can be decreased with increasing cooling rate.


2015 ◽  
Vol 736 ◽  
pp. 19-23
Author(s):  
Taek Kyun Jung ◽  
Hyo Soo Lee ◽  
Hyouk Chon Kwon

This study was carried out to investigate the effects of grain size on mechanical properties in Cu-Sn foil with a thickness of 30 um. The grain size was varied from approximately 7 um to 50 um using heat treatment at 773 K for 2 h to 24 h in a vacuum atmosphere. Tensile test was carried out at room temperature with strain rate of 1mm/min. Typical yield drop phenomenon was observed. Mechanical properties were found to be strongly affected by microstructural features including grain size. The yield strength and tensile strength gradually decreased with increasing the grain size. The strain to fracture also decreased by grain growth. These results could be explained by not only the grain size dependence of yield strength but also the ratio of thickness to grain size dependence of yield strength.


Sign in / Sign up

Export Citation Format

Share Document