Effect of Preparation Technique on Methyl Orange Sorption Behavior of Exfoliated Graphite

2011 ◽  
Vol 284-286 ◽  
pp. 193-196
Author(s):  
Zhao Sheng Chen

Three natural graphite flakes (35, 50 and 80 mesh) were used as raw material. Exfoliated graphite (EG) was prepared by rapidly heating expandable graphite to 1000 °C in a muffle and by irradiating it in a microwave oven with a power of 280 W for 40 s, respectively. The EG samples were used for removing methyl orange (MO) from aqueous solution. The effect of preparation technique of EG (particle size of natural graphite and exfoliation method of expandable graphite) on MO removal properties was investigated, and a higher removal rate was achieved.

2012 ◽  
Vol 499 ◽  
pp. 12-15 ◽  
Author(s):  
Li Ji ◽  
Meng Lu Wang

Using three natural graphites with different particle sizes, 80, 50 and 35 mesh, as raw material, expanded graphite was prepared by rapidly heating expandable graphite in a muffle and by irradiating it in a microwave oven, respectively. The resulting expanded graphites were used for adsorbing methyl blue in water. The results show that the removal rate of methyl blue is influenced by the treatment method of solution, the particle size of natural graphite and expansion method of expandable graphite. After selection of desired operation parameters, a higher removal rate is achieved.


2010 ◽  
Vol 163-167 ◽  
pp. 2333-2336 ◽  
Author(s):  
Kun Yu

Three natural graphite flakes (35, 50 and 80 mesh) were used as raw material. Exfoliated graphite (EG) was prepared by rapidly heating residue H2SO4-graphite intercalation compounds (RGIC) in a muffle and by irradiating it in a microwave oven, respectively. Results show that the exfoliation volume of EG decreases with decreasing the raw graphite particle size. Compared with muffle heating, microwave irradiation is more helpful for the exfoliation of RGICs, especially for the small particle samples.


2011 ◽  
Vol 322 ◽  
pp. 89-92
Author(s):  
Min Cong Zhu ◽  
Tong Yang ◽  
Jin Bo Huang ◽  
Ying Chen Zhang ◽  
Deng Xin Li ◽  
...  

The expanded graphite (EG) was prepared after microwave irradiation treatment of the expandable graphite in a domestic microwave oven at 1000 W for 60 s. The adsorption of methyl orange (MO) from aqueous solution onto EG was investigated at initial concentrations and contact time, different pH values, adsorbent dosage, temperatures for the removal of dye. The results confirmed that the adsorption isotherm data fitted to Langmuir isotherm with monolayer adsorption capacity of 13.37 mg/g. The results suggested that the EG would be an excellent adsorbent for the removal of MO by adsorption process.


2012 ◽  
Vol 499 ◽  
pp. 16-19
Author(s):  
Meng Lu Wang ◽  
Li Ji

Using three natural graphites with different particle sizes, 80, 50 and 35 mesh, as raw material, three expanded graphites were prepared by irradiating expandable graphite in a microwave oven. Results show that the particle size of natural graphite influences strongly the expansion ratio of expanded graphite, and the larger the particle size, the larger the expansion ratio. In addition, the expansion mechanism of expandable graphite is discussed.


Author(s):  
Xiaorong Kang ◽  
Yali Liu ◽  
Can Yang ◽  
Han Cheng

Abstract Dewatered municipal sludge was used as raw material to prepare activated carbon (SAC), and the SAC was modified by walnut shell and nano-titanium dioxide (MSAC). The results showed that the MSAC had a higher specific surface area (SBET) (279.147 m2/g) and total pore volume (VT) (0.324 cm3/g) than the SAC. Simultaneously, the functional groups such as C-O, C = O, and Ti-O-Ti on the surface of MSAC were enhanced due to modification. These physicochemical properties provided prerequisites for the diffusion and degradation of pollutants in MSAC. Furthermore, the MSAC was applied to adsorb amoxicillin (AMX) from aqueous solution, in batch experiments, the maximum removal rate (88.19%) was observed at an initial AMX concentration of 30 mg/L, MSAC dosage of 5.0 g/L, pH of 8, contact time of 180 min, and temperature of 25 °C. In addition, the adsorption process was well described by the Freundlich isotherm model and pseudo-second-order kinetic model, indicating that the adsorption of AMX onto MSAC was dominated by multilayer chemisorption. Also, the adsorption thermodynamics suggested that the adsorption process of AMX onto MSAC was endothermic, feasible and spontaneous.


2011 ◽  
Vol 284-286 ◽  
pp. 169-172
Author(s):  
Xue Qing Yue

Exfoliated graphite/ZnO composites (EG/ZnO) were prepared by heating a mixture of EG and zinc acetate, and under UV irradiation, used for removing methyl orange (MO) from aqueous solution. The composites synchronously have the adsorption efficiency of EG and decomposition efficiency of ZnO. The removal efficiency is influenced by the ZnO content, initial MO concentration and pH of solution. After selection of desired operation parameters, the complete MO removal can be achieved after 3 h UV irradiation.


2017 ◽  
Vol 75 (7) ◽  
pp. 1633-1642 ◽  
Author(s):  
Peng Zhao ◽  
Runhu Zhang ◽  
Jianglin Wang

A novel chitosan/diatomite composite was prepared by a simple mixture in the mass ratio to remove methyl orange (MO) from aqueous media in this study. The composite adsorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy analysis. The parameters to influence the adsorption of MO were studied under such conditions as kinetics, adsorption isotherm, pH effect, and thermodynamics. The results revealed that adsorption of MO was initially rapid and the equilibrium time was reached after 40 min. The optimal value of the pH was 5.0 for better adsorption. The equilibrium data were well fitted to the Langmuir isotherm compared to the Freundlich isotherm, and exhibited the highest capacity and a removal rate of 88.37% under an initial dye concentration of 50 mg/L. The kinetic data were well described by the pseudo-second order model. The thermodynamic calculations revealed that the sorption was viable, spontaneous, and exothermic under the conditions studied. In addition, the chitosan/diatomite composite had good adsorption and desorption performance with respect to reusability after six cycles. These results showed that the chitosan/diatomite could be considered as a potential adsorbent for the removal of MO in aqueous solution.


2014 ◽  
Vol 535 ◽  
pp. 671-674 ◽  
Author(s):  
Lei Ding ◽  
Bei Gang Li ◽  
Jing Mi

Fly ash/CeO2 composite adsorbent (FA/CeO2) was prepared by HCl treatment and precipitation method using a low-cost waste fly ash (FA) as the raw material and used for the removal of Congo Red (CR) from aqueous solution. Effects of important parameters such as contact time, initial dye concentration, pH value and temperature were explored. Adsorption equilibrium and isotherms were investigated. The adsorption of CR onto FA/CeO2 is a fast process and to achieve a basic balance in 30 minutes. The removal of CR is strongly pH-dependent. FA/CeO2 is an effective adsorbent for the CR removal with removal rate of 98.8% when initial CR concentration is 1000 mg/L. The experimental isotherm data were analyzed using Langmuir and Freundlich isotherm models. The results revealed that the adsorption behavior of CR on FA/CeO2 fitted well with the Langmuir model at different temperatures. The maximum adsorption capacity obtained by Langmuir model is 232.56 mg/g which is nearly consistent with the actual adsorption value of 230.01 mg/g at 298K. The Adsorption amount decreases with increasing temperature, but the variation of the amplitude is very small.


Author(s):  
Jiwei Zhang ◽  
Jingjing Xu ◽  
Shuaixia Liu ◽  
Baoxiang Gu ◽  
Feng Chen ◽  
...  

Background: Coal gangue was used as a catalyst in heterogeneous Fenton process for the degradation of azo dye and phenol. The influencing factors, such as solution pH gangue concentration and hydrogen peroxide dosage were investigated, and the reaction mechanism between coal gangue and hydrogen peroxide was also discussed. Methods: Experimental results showed that coal gangue has the ability to activate hydrogen peroxide to degrade environmental pollutants in aqueous solution. Under optimal conditions, after 60 minutes of treatment, more than 90.57% of reactive red dye was removed, and the removal efficiency of Chemical Oxygen Demand (COD) up to 72.83%. Results: Both hydroxyl radical and superoxide radical anion participated in the degradation of organic pollutant but hydroxyl radical predominated. Stability tests for coal gangue were also carried out via the continuous degradation experiment and ion leakage analysis. After five times continuous degradation, dye removal rate decreased slightly and the leached Fe was still at very low level (2.24-3.02 mg L-1). The results of Scanning Electron Microscope (SEM), energy dispersive X-Ray Spectrometer (EDS) and X-Ray Powder Diffraction (XRD) indicated that coal gangue catalyst is stable after five times continuous reuse. Conclusion: The progress in this research suggested that coal gangue is a potential nature catalyst for the efficient degradation of organic pollutant in water and wastewater via the Fenton reaction.


Sign in / Sign up

Export Citation Format

Share Document