In Situ Template Synthesis Titania Nanotube Array Films on Aluminum Plate

2011 ◽  
Vol 295-297 ◽  
pp. 1279-1283
Author(s):  
Wu Feng Jiang ◽  
Su Ju Hao ◽  
Yun Han Ling ◽  
Jun Sheng Liao

Titanium dioxide nanotube array films on aluminum plate were prepared via liquid phase deposition (LPD) method. The samples were characterized by field-emission scanning electron microscopy (FE-SEM) with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The results show that the nanotube array films’ morphology depends on the anodic aluminum oxide (AAO) structure and deposition time. The titanium dioxide nanotube’s outside diameter is about 250 nm, the wall thickness is approximately 40 nm. The as-prepared TiO2array films are amorphous and anatase appeared after calcining at 400°C for 2 hrs. FT-IR spectrum indicates that there are lots of hydroxyl groups on the surface of AAO. When AAO was immersed into 0.1 M (NH4)2TiF6solution at room temperature, AAO was dissolved in the solution and the holes became wide. The hydrolysis reaction was shifted to the right-hand side, TiO2particles locked in-situ on the inner surface of the anodic alumina pore induced by hydroxyl group, thus nanotube array film was obtained.

2008 ◽  
Vol 8 (9) ◽  
pp. 4743-4746 ◽  
Author(s):  
Haldorai Yuvaraj ◽  
Min Hee Woo ◽  
Eun Ju Park ◽  
Yeong-Soon Gal ◽  
Kwon Taek Lim

Poly(3-octylthiophene) (P3OT)-titanium dioxide (TiO2) nanocomposite powder where TiO2 was embedded with homogeneous dispersion was synthesized by in-situ chemical oxidative polymerization of 3-octylthiophene in the presence of TiO2 nanoparticles in supercritical carbon dioxide (scCO2), using ferric chloride as the oxidant. The synthesized materials could be obtained as dry powder upon venting of CO2 after the polymerization. The composites were subsequently characterized by FT-IR spectroscopy, transmission electron microscopy (TEM), X-ray diffraction studies (XRD), thermogravimetric analysis (TGA) and photoluminescence (PL). The incorporation of TiO2 in the composite was endorsed by FT-IR studies. TGA revealed enhanced thermal stability of P3OT/TiO2 nanocomposite compared to 3-octylthiophene. TEM analysis showed that well dispersed TiO2 nanoparticles in the polymer matrix. Photoluminescence quenching increased with increasing TiO2 concentration in the composite.


2010 ◽  
Vol 113-116 ◽  
pp. 1712-1715
Author(s):  
Cheng Yu Wang ◽  
Chang Yu Liu ◽  
Jian Li

The preparation of hydrophobic CaCO3-wood composite through a double-diffusive method using dodecanoic acid as organic substrate is demonstrated. The product was characterized by the contact angle analysis, X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The mechanical properties of the product were measured. The results show that the synthesized CaCO3 fills in the wood cell and covers the surface of wood. The CaCO3-wood composite is hydrophobic. The mechanical properties of wood composite have significantly increased.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 62 ◽  
Author(s):  
Gunugunuri K. Reddy ◽  
Torin C. Peck ◽  
Charles A. Roberts

Direct decomposition of NO into N2 and O2 (2NO→N2 + O2) is recognized as the “ideal” reaction for NOx removal because it needs no reductant. It was reported that the spinel Co3O4 is one of the most active single-element oxide catalysts for NO decomposition at higher reaction temperatures, however, activity remains low below 650 °C. The present study aims to investigate new promoters for Co3O4, specifically PdO vs. PtO. Interestingly, the PdO promoter effect on Co3O4 was much greater than the PtO effect, yielding a 4 times higher activity for direct NO decomposition at 650 °C. Also, Co3O4 catalysts with the PdO promoter exhibit higher selectivity to N2 compared to PtO/Co3O4 catalysts. Several characterization measurements, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), and in situ FT-IR, were performed to understand the effect of PdO vs. PtO on the properties of Co3O4. Structural and surface analysis measurements show that impregnation of PdO on Co3O4 leads to a greater ease of reduction of the catalysts and an increased thermal stability of surface adsorbed NOx species, which contribute to promotion of direct NO decomposition activity. In contrast, rather than remaining solely as a surface species, PtO enters the Co3O4 structure, and it promotes neither redox properties nor NO adsorption properties of Co3O4, resulting in a diminished promotional effect compared to PdO.


Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 155 ◽  
Author(s):  
Zhenheng Diao ◽  
Lushi Cheng ◽  
Xu Hou ◽  
Di Rong ◽  
Yanli Lu ◽  
...  

Hierarchical HZSM-5 membranes were prepared on the inner wall of stainless steel tubes, using amphiphilic organosilane (TPOAC) and mesitylene (TMB) as a meso-porogen and a swelling agent, respectively. The mesoporosity of the HZSM-5 membranes were tailored via formulating the TPOAC/Tetraethylorthosilicate (TPOAC/TEOS) ratio and TMB/TPOAC ratio, in synthesis gel, and the prepared membranes were systematically characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), N2 adsorption–desorption, N2 permeation, inductively coupled plasma (ICP), in situ fourier transform infrared (FT-IR), ammonia temperature-programmed desorption (NH3-TPD), etc. It was found that the increase of the TPOAC/TEOS ratio promoted a specific surface area and diffusivity of the HZSM-5 membranes, as well as decreased acidity; the increase of the TMB/TPOAC ratios led to an enlargement of the mesopore size and diffusivity of the membranes, but with constant acid properties. The catalytic performance of the prepared HZSM-5 membranes was tested using the catalytic cracking of supercritical n-dodecane (500 °C, 4 MPa) as a model reaction. The hierarchical membrane with the TPOAC/TEOS ratio of 0.1 and TMB/TPOAC ratio of 2, exhibited superior catalytic performances with the highest activity of up to 13% improvement and the lowest deactivation rate (nearly a half), compared with the microporous HZSM-5 membrane, due to the benefits of suitable acidity, together with enhanced diffusivity of n-dodecane and cracking products.


2007 ◽  
Vol 336-338 ◽  
pp. 2200-2202 ◽  
Author(s):  
Wu Feng Jiang ◽  
Yun Han Ling ◽  
Su Ju Hao ◽  
Hong Yi Li ◽  
Xin De Bai ◽  
...  

Anodic aluminum oxide (AAO) is commonly used as a starting template for fabrication of several kinds of functional nanoscale devices due to its homogeneous nanohole structure with high aspect ratio. In this paper, high density and uniform titanium dioxide nanotube array films were prepared via liquid phase deposition method by immersing the AAO templates in an aqueous ammonium hexafluorotitanate solution. The phase and microstructure of the nanotube array films were characterized by X-ray diffraction and field-emission scanning electron microscopy. It was found that the mean inner diameters of nanotube are 40-100 nm, mainly depended on different templates and post treatment condition; the phase of as-deposited TiO2 array film was amorphous, while it became anatase at above 400°C.


2012 ◽  
Vol 472-475 ◽  
pp. 2223-2226
Author(s):  
Peng Fei Yang

Phenyl isocyanate is used to react with 1,3-butanediol at different temperatures. Toluene is used as solvent and 1,4-diazabicyclo[2,2,2]octane is used as catalyst. In-situ FT-IR is used to monitor the reaction to work out rate constant, Arrhenius equation and Eyring equation. The urethane reaction has been found to be a second order reaction, and the rate constant seems different between initial stage and final stage. The activation energy (Ea), activation enthalpy (ΔH) and activation entropy (ΔS) for the urethane reaction of primary hydroxyl group are calculated out, which are 26.4 kJ•mol-1, 23.6 kJ•mol-1and -186.6 J•mol-1•k-1, respectively. They are very useful to reveal the reaction mechanism.


NANO ◽  
2012 ◽  
Vol 07 (06) ◽  
pp. 1250050 ◽  
Author(s):  
HONG-ZHEN XIE ◽  
JIAN-DONG WANG ◽  
CHONG-XIAO LUO ◽  
JIN-KU LIU

The hydroxyapatite (HAP) assembled microsphere chains/silver ( Ag ) nanocomposites were prepared by a facile in situ preparation method under hydrothermal condition. The crystal structure of products was characterized by X-ray diffraction (XRD) and the morphologies of products were investigated by transmission electron microscopy (TEM). The nanocomposites own large surface area and can hydrogen-bond to other substances by the hydroxyl group on the surface. The nanocomposites have good structural stability under the electrostatic effect of the silver nanoparticles and strong adsorbability of the HAP microsphere chains. The two substances combine to form special nanocomposite spheres. Specially, the HAP/ Ag nanocomposites have high inhibitory activity and can be applied in the environment and medicine fields. The nanocomposite structures can save the consumption of Ag materials.


2011 ◽  
Vol 335-336 ◽  
pp. 3-11
Author(s):  
Jun Wang

The nanocomposites of poly(vinyl acetate)/montmorillonite (PVAc/MMT) were prepared using vinyl acetate and organically modified alkaline calcium base montmorillonite (MMT) by in situ emulsion copolymerization. The organic modification was acrylic acid including terminal reactive vinylic group. The samples were characterized using fourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD). Thermal properties of the PVAc/MMT films were studied by thermogravimetric (TG) and differential scanning calorimetric (DSC). The FT-IR results indicated that the vinyl group on the surface of the vinyl MMT nanoparticles had been successfully copolymerized with vinyl acetate. The XRD results demonstrated that the MMT was exfoliated during polymerization. The exfoliated PVAc/MMT nanocomposites showed a lower glass transition temperature (Tg) and a worse thermal stability compared with the pure PVAc. However, bonding power of the nanocomposite latex of PVAc/MMT was improved due to the strong interaction between silica nanoparticles and polymer matrix via covalent bonds.


2021 ◽  
Author(s):  
Sawsan A. Al-Hilifi ◽  
Rawdah M. Al-Ali

Abstract The recent interest in bio-packing at field of food become trending in the development of antimicrobial coatings. The focus of this study was to assess the potential application of zingiber officinale essential oil (GEO) in chitosan films (CHf). The data indicated that there were significant differences(p < 0.05) in the chemical composition of the samples.Forty-seven active compounds of the essential oil were identified from the rhizomes of ginger, which were identified byGC-MS. Fourier transforms infrared spectra (FT-IR) confirmed that an interaction between the hydroxyl groups of the phenolic compounds of the essential oil and the amide groups of polymer matrix. As shown the appearance of peaks at wavenumbers 1639cm-1 and 1558cm-1 Furthermore, X-ray diffraction results suggested a lower crystallintiyin CHf due to GEO effect. Differential Scanning Calorimetric (DSC) analysis revealed that CHf possessed high thermal stability, especially when different concentrations of GEO added. The bioactive CHf showed distinct activity against both positive and negative gram bacteria. They are Staphylococcus aurous, Bacillus subtillis, Streptococcus Sp. Escherichia coli, Salmonella Sp. Pseudomonas erugiosa. This results provides a comprehensive insight on the importance of films incorporated with EOs of interest in food packaging.


Sign in / Sign up

Export Citation Format

Share Document