Analysis of Influence Factors and Main Control Factors Screening in CO2 Miscible Flooding

2011 ◽  
Vol 347-353 ◽  
pp. 228-232
Author(s):  
Nan Li ◽  
Lin Song Cheng ◽  
Jia Cheng

CO2 miscible flooding is an environmental recovery method to greatly enhance oil recovery by the gas of CO2 which leads global warming. In view of the fact that there are many influence factors of seepage law in CO2 miscible flooding, the four influence factors of pore structure, injection rate, reservoir heterogeneity and initial oil saturation are analyzed by means of reservoir numerical simulation to screen out the main control influence factors in this paper on the account of the characteristics of serious reservoir heterogeneity in China. The research result in this paper could provide practical guidance significance to the oilfield development program adjustment at some extent.

2020 ◽  
Vol 1 (1) ◽  
pp. 8
Author(s):  
Boni Swadesi ◽  
Suranto Suranto ◽  
Indah Widiyaningsih ◽  
Matrida Jani

Reservoirs in the world contain various types of oil, the difference of these oil types can be seen in the viscosity value and also the value of the API degree. Reservoirs in the U-field contain heavy oil that cannot be produced conventionally so we need the EOR (Enhanced Oil Recovery) method. CSS is a method that uses high-temperature hot steam aimed at reducing the viscosity of the oil so that oil can be produced. In this final project, a simulation is conducted to study the effect of various parameters such as steam quality, injection rate, and cyclic period on CSS and also determine the best scenario for U-field. The simulation begins by determining the best steam quality value, then doing sensitivity to the expected injection rate, followed by sensitivity to the cyclic period. The best scenario results are the integration of optimum parameters, namely steam quality 0.8, the injection rate of 550 BPD, and cyclic period of 20 days injection, 4 days soaking, and 60 days of production produce RF of 35.02%.


1971 ◽  
Vol 11 (04) ◽  
pp. 351-355 ◽  
Author(s):  
M.M. El-Saleh ◽  
S.M. Farouq Ali

Abstract Results of an experimental study of oil recovery by a steam slug driven by a cold waterflood in a linear porous medium are described. The model included simulation of heat losses to the adjacent formations. Steam displacements were conducted, using a number of hydrocarbons and various steam-slug sizes, with the core initially containing a residual oil or irreducible water saturation. It was found that the steam-slug displacement is more efficient in the case of light oils than for the heavier ones. The injection of cold water following steam resulted in almost total condensation of the steam present in the porous medium, with the process degenerating into a hot waterflood. The oil process degenerating into a hot waterflood. The oil recovery efficiency of the process depends on whether an oil bank is formed during the steam-injection phase and whether the oil responds favorably to a hot phase and whether the oil responds favorably to a hot waterflood Introduction Steam injection has been shown to be an effective oil recovery method both by field and laboratory tests. However, the method has the inherent disadvantages of a high cost of operation and excessive heat losses. The modification discussed here consists in the injection of cold water after a slug of steam, which helps to offset the above disadvantages partly at the expense of oil recovery. The injected water serves to propel the oil bank formed ahead of the steam-invaded zone and transports the heat contained in the steam-swept zone farther downstream, thus leading to more complete utilization of the heat injected. EXPERIMENTAL APPARATUS AND PROCEDURE Fig. 1 depicts a schematic diagram of the apparatus employed. It consisted of a 4-ft-long core composed of a steel tube having a rectangular cross-section (see Table 1 for dimensions and other information) packed with glass beads (mesh size 200 to 270, corresponding to 0.0021 to 0.0029 in.) and fitted with 15 iron-constantan thermocouples and eight pressure gauges. The two ends of the core were fitted with sintered bronze plates to ensure strictly linear fluid flow. In order to simulate the underlying formations, the core was placed upon a sand-filled wooden box having a depth placed upon a sand-filled wooden box having a depth of 2.5 ft and a length and width equal to those of the core. An identical box was placed in contact with the top surface of the core to simulate the overlying formations. The sand packs simulated infinitely thick formations, since the temperatures at the upper and lower extremities remained undisturbed during a run. The sides of the two boxes were fitted with thermometers and insulated, together with the exposed surface of the core; the top and bottom surfaces of the core were in contact with sand. An electrical system was designed for temperature measurement at the 15 points; the core inlet and outlet were fitted with thermocouples. A technique was devised for pressure measurement virtually without disturbing the flow. A positive-displacement pump, in conjunction with a coil immersed in a high-temperature oil bath, was used for conducting hot waterfloods as well as for preparing the core for a run (Fig. 1). Steam, having a quality of 95 percent was supplied by an electric boiler capable of delivering up to 69 lb/hr at pressures up m 250 psig. The core effluent was passed though a suitable condenser provided with passed though a suitable condenser provided with a backpressure regulator used to control the steam injection rate. The average steam (as condensate) injection rate for a run was estimated by dividing the total effluent volume minus the volume of the water needed to fill up the core at the end of steam injection, by the steam injection time. The properties of the fluids used are listed in Table 1. The hydrocarbon mixtures were chosen to study the steam distillation effects. Drakeol 15 and 33 at 80 deg. F are high-boiling mineral oils having viscosities of 515 and 100.0 cp, respectively. Viscosity-temperature behavior for the hydrocarbons used is shown in Fig. 2. The core was saturated with distilled water and then saturated with the oil to be tested by displacement (terminal WOR 1:100). If desired, the core was waterflooded prior to steam injection (terminal WOR 100:1). SPEJ P. 351


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hamed Hematpur ◽  
Reza Abdollahi ◽  
Mohsen Safari-Beidokhti ◽  
Hamid Esfandyari

The growing demand for clean energy can be met by improving the recovery of current resources. One of the effective methods in recovering the unswept reserves is chemical flooding. Microemulsion flooding is an alternative for surfactant flooding in a chemical-enhanced oil recovery method and can entirely sweep the remaining oil in porous media. The efficiency of microemulsion flooding is guaranteed through phase behavior analysis and customization regarding the actual field conditions. Reviewing the literature, there is a lack of experience that compared the macroscopic and microscopic efficiency of microemulsion flooding, especially in low viscous oil reservoirs. In the current study, one-quarter five-spot glass micromodel was implemented for investigating the effect of different parameters on microemulsion efficiency, including surfactant types, injection rate, and micromodel pattern. Image analysis techniques were applied to represent the phase saturations throughout the microemulsion flooding tests. The results confirm the appropriate efficiency of microemulsion flooding in improving the ultimate recovery. LABS microemulsion has the highest efficiency, and the increment of the injection rate has an adverse effect on oil recovery. According to the pore structure’s tests, it seems that permeability has little impact on recovery. The results of this study can be used in enhanced oil recovery designs in low-viscosity oil fields. It shows the impact of crucial parameters in microemulsion flooding.


2013 ◽  
Vol 779-780 ◽  
pp. 1457-1461
Author(s):  
Xian Wen Li ◽  
Chun Mei Xu ◽  
Fang Yuan Guo ◽  
Xing Hong Wang

This paper from the research of the porous medium pore structure characteristics of ultra-low permeability reservoir, combined the core flow test with reservoir characteristics analysis and fluid properties analysis studying the reservoir water injection development effect. The research results show that: the microscopic heterogeneity of ultra-low permeability reservoir is strong, pore connectivity of porous medium is poor, seepage throat is very fine and microcrack is growth. During the process of water injection development there exist particle migration phenomenon, could easily cause pore throat blockage, and lead to water injection pressure rebound. According to the research result targeted on the organic mud acid deep broken down experiment, the result shows that it can achieve the purpose of depressure and increasing injection rate.


Author(s):  
A. Koto

The objective of this paper is to determine the optimum anaerobic-thermophilic bacterium injection (Microbial Enhanced Oil Recovery) parameters using commercial simulator from core flooding experiments. From the previous experiment in the laboratory, Petrotoga sp AR80 microbe and yeast extract has been injected into core sample. The result show that the experiment with the treated microbe flooding has produced more oil than the experiment that treated by brine flooding. Moreover, this microbe classified into anaerobic thermophilic bacterium due to its ability to live in 80 degC and without oxygen. So, to find the optimum parameter that affect this microbe, the simulation experiment has been conducted. The simulator that is used is CMG – STAR 2015.10. There are five scenarios that have been made to forecast the performance of microbial flooding. Each of this scenario focus on the injection rate and shut in periods. In terms of the result, the best scenario on this research can yield an oil recovery up to 55.7%.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Ruissein Mahon ◽  
Gbenga Oluyemi ◽  
Babs Oyeneyin ◽  
Yakubu Balogun

Abstract Polymer flooding is a mature chemical enhanced oil recovery method employed in oilfields at pilot testing and field scales. Although results from these applications empirically demonstrate the higher displacement efficiency of polymer flooding over waterflooding operations, the fact remains that not all the oil will be recovered. Thus, continued research attention is needed to further understand the displacement flow mechanism of the immiscible process and the rock–fluid interaction propagated by the multiphase flow during polymer flooding operations. In this study, displacement sequence experiments were conducted to investigate the viscosifying effect of polymer solutions on oil recovery in sandpack systems. The history matching technique was employed to estimate relative permeability, fractional flow and saturation profile through the implementation of a Corey-type function. Experimental results showed that in the case of the motor oil being the displaced fluid, the XG 2500 ppm polymer achieved a 47.0% increase in oil recovery compared with the waterflood case, while the XG 1000 ppm polymer achieved a 38.6% increase in oil recovery compared with the waterflood case. Testing with the motor oil being the displaced fluid, the viscosity ratio was 136 for the waterflood case, 18 for the polymer flood case with XG 1000 ppm polymer and 9 for the polymer flood case with XG 2500 ppm polymer. Findings also revealed that for the waterflood cases, the porous media exhibited oil-wet characteristics, while the polymer flood cases demonstrated water-wet characteristics. This paper provides theoretical support for the application of polymer to improve oil recovery by providing insights into the mechanism behind oil displacement. Graphic abstract Highlights The difference in shape of relative permeability curves are indicative of the effect of mobility control of each polymer concentration. The water-oil systems exhibited oil-wet characteristics, while the polymer-oil systems demonstrated water-wet characteristics. A large contrast in displacing and displaced fluid viscosities led to viscous fingering and early water breakthrough.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 319 ◽  
Author(s):  
Bin Huang ◽  
Xiaohui Li ◽  
Cheng Fu ◽  
Ying Wang ◽  
Haoran Cheng

Previous studies showed the difficulty during polymer flooding and the low producing degree for the low permeability layer. To solve the problem, Daqing, the first oil company, puts forward the polymer-separate-layer-injection-technology which separates mass and pressure in a single pipe. This technology mainly increases the control range of injection pressure of fluid by using the annular de-pressure tool, and reasonably distributes the molecular weight of the polymer injected into the thin and poor layers through the shearing of the different-medium-injection-tools. This occurs, in order to take advantage of the shearing thinning property of polymer solution and avoid the energy loss caused by the turbulent flow of polymer solution due to excessive injection rate in different injection tools. Combining rheological property of polymer and local perturbation theory, a rheological model of polymer solution in different-medium-injection-tools is derived and the maximum injection velocity is determined. The ranges of polymer viscosity in different injection tools are mainly determined by the structures of the different injection tools. However, the value of polymer viscosity is mainly determined by the concentration of polymer solution. So, the relation between the molecular weight of polymer and the permeability of layers should be firstly determined, and then the structural parameter combination of the different-medium-injection-tool should be optimized. The results of the study are important for regulating polymer injection parameters in the oilfield which enhances the oil recovery with reduced the cost.


1965 ◽  
Vol 5 (02) ◽  
pp. 131-140 ◽  
Author(s):  
K.P. Fournier

Abstract This report describes work on the problem of predicting oil recovery from a reservoir into which water is injected at a temperature higher than the reservoir temperature, taking into account effects of viscosity-ratio reduction, heat loss and thermal expansion. It includes the derivation of the equations involved, the finite difference equations used to solve the partial differential equation which models the system, and the results obtained using the IBM 1620 and 7090–1401 computers. Figures and tables show present results of this study of recovery as a function of reservoir thickness and injection rate. For a possible reservoir hot water flood in which 1,000 BWPD at 250F are injected, an additional 5 per cent recovery of oil in place in a swept 1,000-ft-radius reservoir is predicted after injection of one pore volume of water. INTRODUCTION The problem of predicting oil recovery from the injection of hot water has been discussed by several researchers.1–6,19 In no case has the problem of predicting heat losses been rigorously incorporated into the recovery and displacement calculation problem. Willman et al. describe an approximate method of such treatment.1 The calculation of heat losses in a reservoir and the corresponding temperature distribution while injecting a hot fluid has been attempted by several authors.7,8 In this report a method is presented to numerically predict the oil displacement by hot water in a radial system, taking into account the heat losses to adjacent strata, changes in viscosity ratio with temperature and the thermal-expansion effect for both oil and water. DERIVATION OF BASIC EQUATIONS We start with the familiar Buckley-Leverett9 equation for a radial system:*Equation 1 This can be written in the formEquation 2 This is sometimes referred to as the Lagrangian form of the displacement equation.


Sign in / Sign up

Export Citation Format

Share Document