Effect of Ladle Slag Modification on Slag Sticking to Snorkel and Rate of Slag Erosion

2011 ◽  
Vol 402 ◽  
pp. 179-182
Author(s):  
Hong Ming Wang ◽  
Dao Xin Zhang ◽  
Yong Qi Yan ◽  
Mian Zhang ◽  
Gui Rong Li ◽  
...  

To reduce the slag sticking to snorkel and to increase the operation life of snorkel during ladle alloying process, B2O3-CaO (mass ratio 1:2) and CaF2-CaO(mass ratio 1:2) were respectively employed as modifiers added to ladle slag. The effects of modifier on weight of sticking slag and erosion rate were investigated. The results showed that the weight of slag sticking to snorkel is reduced, but the rate of modified ladle slag pervading into snorkel is increased with the increasing of modifier added into ladle slag. The optimal weight of modifier is about 10 percent of total weight of ladle slag. The results of test in practice indicate that the slag sticking to the snorkel has been reduced by the slag modification. At the same time, the industrial applied test results show that the operation life of snorkel is increased by more than 100 percent.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 512
Author(s):  
Zhi Cheng ◽  
Xinrong Cheng ◽  
Yuchao Xie ◽  
Zhe Ma ◽  
Yuhao Liu

Desulfurization ash and fly ash are solid wastes discharged from boilers of power plants. Their utilization rate is low, especially desulfurization ash, most of which is stored. In order to realize their resource utilization, they are used to modify loess in this paper. Nine group compaction tests and 32 group direct shear tests are done in order to explore the influence law of desulfurization ash and fly ash on the strength of the loess. Meanwhile, FLAC3D software is used to numerically simulate the direct shear test, and the simulation results and the test results are compared and analyzed. The results show that, with the increase of desulfurization ash’s amount, the shear strength of the modified loess increases first and then decreases. The loess modified by the fly ash has the same law with that of the desulfurization ash. The best mass ratio of modified loess is 80:20. When the mass ratio is 80:20, the shear strength of loess modified by the desulfurization ash is 12.74% higher than that of the pure loess on average and the shear strength of loess modified by fly ash is 3.59% higher than that of the pure loess on average. The effect of the desulfurization ash on modifying the loess is better than that of the fly ash. When the mass ratio is 80:20, the shear strength of loess modified by the desulfurization ash is 9.15% higher than that of the fly ash on average. Comparing the results of the simulation calculation with the actual test results, the increase rate of the shear stress of the FLAC3D simulation is larger than that of the actual test, and the simulated shear strength is about 8.21% higher than the test shear strength.


Author(s):  
Rob H. Bisseling

This chapter explores parallel algorithms for graph matching. Here, a graph is the mathematical representation of a network, with vertices representing the nodes of the network and edges representing their connections. The edges have positive weights, and the aim is to find a matching with maximum total weight. The chapter first presents a sequential, parallelizable approximation algorithm based on local dominance that guarantees attaining at least half the optimal weight in near-linear time. This algorithm, coupled with a vertex partitioning, is the basis for developing a parallel algorithm. The BSP approach is shown to be especially advantageous for graph problems, both in developing a parallel algorithm and in proving it correct. The basic parallel algorithm is enhanced by giving preference to local matches when breaking ties and by adding a load-balancing mechanism. The scalability of the parallel algorithm is put to the test using graphs of up to 150 million edges.


2011 ◽  
Vol 295-297 ◽  
pp. 2647-2650 ◽  
Author(s):  
Hong Ming Wang ◽  
Ting Wang Zhang ◽  
Hua Zhu ◽  
Yong Qi Yan ◽  
Yi Nan Zhao

To avoid slag sticking onto the snorkel during CAS-OB ladle refining process, B2O3-CaO(mass ratio equals 1:1) and CaF2-CaO(mass ratio equals 1:1) were respectively employed as modifiers added to decrease the viscosity of ladle slag. The rotary cylinder method was adopted in the viscosity measurements. The results showed that the modifiers could decrease the viscosity of ladle refining slag remarkably. At 1500°C, the viscosity of ladle slag without any modifiers is about 6.0 Pa·s. But by adding more than 10mass% CaO-B2O3 or CaO-CaF2, the slag viscosity at 1500°C could be decreased lower than 1.0 Pa·s. The mechanism of modifiers decreasing the slag viscosity was analyzed.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xuanyi Chen ◽  
Xiaofei Jing ◽  
Hai Cai ◽  
Yijun Wang ◽  
Luhua Ye

Tailings dams are high-potential-energy dams built to store various ore tailings, and the overtopping failure caused by hydraulic erosion is one of the most common failure modes. The characteristics of hydraulic erosion of the reinforced tailings were studied by using the self-made erosion apparatus with four kinds of reinforcement spacing 2.5, 1.7, 1.3, and 1.0 cm, respectively. The test results show a positive correlation between the reinforcement spacing and erosion rate of tailings. Based on the sediment scouring theory, the scouring constant in the erosion rate formula is determined to be 0.056 mm/s; a prediction model for the hydraulic erosion rate of reinforced tailings is established by introducing the collapse coefficient into the results of the overflow test of reinforced tailings. This model can provide a reference for the prediction of overtopping-induced erosion failure of the reinforced tailings dam.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ba Huu Dinh ◽  
Anh-Dan Nguyen ◽  
Seo-Yong Jang ◽  
Young-Sang Kim

AbstractThis paper investigates the erosion characteristics of soils using the pinhole test. The tests were conducted with two undisturbed clay samples and five disturbed sandy soil samples. Based on the pinhole test results, a process to analyze the critical shear stress and erosion rate was proposed. The result indicates that the particle size distribution and coefficient of uniformity of soils are significant factors that affect the erosion characteristics of the soil. Samples with a grain size ranging from 0.2 to 0.6 mm is most susceptible to soil erosion. The erosion coefficients can be used to distinguish between the low erodible soils (ND3 and ND4) and high erodible ones (D1 and D2). Furthermore, it is interesting to note that the critical shear stress might be used as an identification parameter for erosion characteristics of the soil: τc > 3.5 Pa (ND3), 3.0 Pa < τc < 3.5 Pa (D2), and τc < 3.0 Pa (D1).


2021 ◽  
Vol 5 (2) ◽  
pp. 103
Author(s):  
Putriana Mayang Sari ◽  
Fauziah Fauziah ◽  
Aris Gunaryati

Currently, the food business sector is increasing, one of which is tofu producers in South Tangerang. Many people who want to buy tofu of good quality but do not know the closest distance to the factory is located. In this research, we will use Dijkstra's Algorithm which is applied to the Android software to determine the shortest distance from one point to the tofu factory which is the chosen destination. Using the Dijkstra algorithm, an application will be designed, namely a mobile-based Go-Tofu for finding the closest route to the tofu factory. The route search process is carried out with a graph that has a weight and an area that is connected to a predetermined route. In the application test, it produces the shortest route from a house to the tofu factory with the smallest total weight of 11 kilometers based on the test results in the study.Keywords:Dijkstra’s Algorithm, Android, Flutter, Shortest Line, Tofu Factory.


Author(s):  
Hiromu Isaka ◽  
Masatsugu Tsutsumi ◽  
Hiroyuki Kobayashi ◽  
Tadashi Shiraishi

The authors performed experimental study for the purpose of the following two items from a viewpoint of cavitation erosion of a cylindrical orifice in view of a problem at the letdown orifice in PWR (Pressurized Water Reactor). 1. To get the critical cavitation parameter of the cylindrical orifice to establish the design criteria for prevention of cavitation erosion, and 2. to ascertain the erosion rate in such an eventuality that the cavitation erosion occurs with the orifice made of stainless steel with precipitation hardening (17-4-Cu hardening type stainless steel), so that we confirm the appropriateness of the design criteria. Regarding the 1st item, we carried out the cavitation tests to get the critical cavitation parameters inside and downstream of the orifice. The test results showed that the cavitation parameter at inception is independent of the length or the diameter of the orifice. Moreover, the design criteria of cavitation erosion of cylindrical orifices have been established. Regarding the 2nd item, we tested the erosion rate under high-pressure conditions. The cavitation erosion actually occurred in the cylindrical orifice at the tests that was strongly resemble to the erosion occurred at the plant. It will be seldom to reproduce resemble cavitation erosion in a cylindrical orifice with the hard material used at plants. We could establish the criteria for preventing the cavitation erosion from the test results.


2017 ◽  
Vol 904 ◽  
pp. 157-161 ◽  
Author(s):  
Mao Chieh Chi ◽  
Hsian Chen ◽  
Tsai Lung Weng ◽  
Ran Huang ◽  
Yih Chang Wang

This study investigated the durability of alkali-activated binders based on blends of fly ash (FA) and ground granulated blast furnace slag (GGBFS). Five fly ash-to-slag ratios of 100/0, 75/25, 50/50, 25/75, and 0/100 by mass were selected to produce alkali-activated fly ash/slag (AAFS) concrete. Sodium oxide (Na2O) concentrations of 6% and 8% of binder weight and activator modulus ratios (mass ratio of SiO2 to Na2O) of 0.8, 1.0, and 1.23 were used as alkaline activators. Test results show that the total charge passed of AAFS concrete is between 2500 and 4000 coulombs, higher than the comparable OPC concrete. However, AAFS concrete exposed to sulfate attack performed better than OPC concrete. Based on the results, 100% slag-based AAFS concrete with Na2O concentration of 8% and activator modulus ratio of 1.23 has the superior performances.


Author(s):  
Ping Tao ◽  
Ling LU ◽  
Hui Xie ◽  
Long Zhang ◽  
Xin Wei

Cu-Ni-Si alloys have been widely applied in electronic and electrical industries.The effect of precipitation on the microstructure and properties of the alloys are still not well understood. In this study, Cu-Ni-Si alloys were prepared by hot-pressed sintering and elemental copper powders, nickel powders and silicon powders as raw materials. The results show that, there were no Ni-Si intermetallic compounds except the δ-Ni2Si phase in the microstructure by hot-pressed sintered preparation of Cu-Ni-Si alloys. And the distribution of the δ-Ni2Si phase in the alloy was more uniform and smaller. After aging treatment, when the mass ratio of Ni and Si were 2:1 and 3:1, the precipitation of δ-Ni2Si phase was significantly less, and when the mass ratio of Ni and Si were 4:1 and 5:1, the precipitation of δ-Ni2Si phase particles increased significantly.The test results by electrical conductivity and vickers hardness show that after ageing treatment, both the electrical conductivity and vickers hardness of the alloys were greatly improved. When the electrical conductivity was 39.33%IACS, the vickers hardness was 230.95HV, and the Cu-Ni-Si alloy had the best comprehensive performance.


2018 ◽  
Vol 9 (1) ◽  
pp. 58-69
Author(s):  
M. B. Hossain ◽  
M. Kumruzzaman ◽  
M. Roknuzzaman

This study is focused on the possibility of using coal mine wastes as a replacement for conventional road subgrades. Various laboratory tests carried out on fresh coal mine waste collected from Barapukuria Coal Mine (Located at Dinajpur, Bangladesh) showed that, it behaves like low strength soil with 0.71% CBR and 18.74% plasticity index which is unsuitable for engineering utilization. Later, fine sand and cement were added with the waste. Three different cement proportion were tested (5%, 8% and 10% of total weight) keeping a constant sand proportion (20% of total weight). The unconfined compression strength and CBR value were found to increase greatly. Analyzing the test results, waste mixed with 8% cement and 20% sand showing 27.44% CBR and 9.09% plasticity index was found to be effective for using as subgrade. Chemical analysis of waste detected the presence of lead as 0.026 ppm which may cause groundwater contamination.


Sign in / Sign up

Export Citation Format

Share Document