A New Compact Dual-Band Filter Using SIR

2012 ◽  
Vol 424-425 ◽  
pp. 573-576
Author(s):  
Jin Ping Hu ◽  
Guo Hui Li ◽  
Wei Dong Fang ◽  
Wei Zhang ◽  
Hai Ping Hu

A narrowband dual-band bandpass filter based on step impedance resonator (SIR) is proposed in this paper to realize high performance with a compact size. The center frequencies of the designed filter are 2.4 and 5.8GHz, where it is suitable for wireless communication system. The absolute bandwidth approaches 200MHz with 8.3% fractional bandwidth at -3dB, and the simulations show that the return loss of the first and the second band is lower than -20dB. Between the two passbands, there is a transmission zero which can achieve a high out-band isolation. For demonstration, the filter has been fabricated and the measurement results show the excellent agreement with the theoretical simulation results

Author(s):  
Dian Widi Astuti ◽  
Rizki Ramadhan Putra ◽  
Muslim Muslim ◽  
Mudrik Alaydrus

The substrate integrated waveguide (SIW) structure is the candidate for many application in microwave, terahertz and millimeter wave application. It because of SIW structure can integrate with any component in one substrate than others structure. A kind components using SIW structure is a filter component, especialy bandpass filter. This research recommended SIW bandpass filter using rectangular open loop resonator for giving more selectivity of filter. It can be implemented for short range device (SRD) application in frequency region 2.4 - 2.483 GHz. Two types of SIW bandpass filter are proposed. First, SIW bandpass filter is proposed using six rectangular open loop resonators while the second SIW bandpass filter used eight rectangular open loop resonators. The simulation results for two kinds of the recommended rectangular open loop resonators have insertion loss (S<sub>21</sub> parameter) below 2 dB and return loss (S<sub>11</sub> parameter) more than 10 dB. Fabrication of the recommended two kind filters was validated by Vector Network Analyzer. The measurement results for six rectangular open loop resonators have 1.32 dB for S<sub>21</sub> parameter at 2.29 GHz while the S<sub>11</sub> parameter more than 18 dB at 2.26 GHz – 2.32 GHz. While the measurement results has good agreement for eight rectangular open loop resonators. Its have S<sub>21</sub> below 2.2 dB at 2.41 – 2.47 GHz and S<sub>11</sub> 16.27 dB at 2.38 GHz and 11.5 dB at 2.47 GHz.


SINERGI ◽  
2018 ◽  
Vol 22 (1) ◽  
pp. 63
Author(s):  
Iis Andini ◽  
Dian Widi Astuti ◽  
Muslim Muslim

In this paper, we present a bandpass filter that passed frequency of 1.7 GHz – 1.8 GHz. It is applied for an uplink frequency in 4G 1800MHz. This filter is created by using substrate PCB TMM-10i and has a compact size of 42 mm x 42 mm. The compact size is also important besides selectivity. The selectivity is achieved by implementing cascade square loop resonator method which generated transmission zeros. Actually, transmission zeros are obtained from the coupled resonator. The bandpass filter is designed by adding an external resonator on each square of the resonator loop and a patch to the inside of the square loop resonator. The parameter performances are simulated by HFSS. The parameter performances for return loss value is 14.24 dB at frequency 1.75 GHz and insertion loss value is 0.65 dB at frequency 1.75 GHz. By using VNA Anritsu MS 2026A, prototype bandpass filter is measured. The measurement results for return loss value is 6.8 dB and insertion loss value is 2.2 dB.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1932
Author(s):  
Jian Chen ◽  
Zhi-Ji Wang ◽  
Bao-Hua Zhu ◽  
Eun-Seong Kim ◽  
Nam-Young Kim

This article presents a compact quad flat no-lead (QFN)-packaged second-order bandpass filter (BPF) with intertwined inductors, a dendritic capacitor, and four air-bridge structures, which was fabricated on a gallium arsenide (GaAs) substrate by integrated passive device (IPD) technology. Air-bridge structures were introduced into an approximate octagonal outer metal track to provide a miniaturized chip size of 0.021 × 0.021 λ0 (0.8 × 0.8 mm2) for the BPF. The QFN-packaged GaAs-based bandpass filter was used to protect the device from moisture and achieve good thermal and electrical performances. An equivalent circuit was modeled to analyze the BPF. A description of the manufacturing process is presented to elucidate the physical structure of the IPD-based BPF. Measurements were performed on the proposed single band BPF using a center frequency of 2.21 GHz (return loss of 26.45 dB) and a 3-dB fractional bandwidth (FBW) of 71.94% (insertion loss of 0.38 dB). The transmission zero is located at the 6.38 GHz with a restraint of 30.55 dB. The manufactured IPD-based BPF can play an excellent role in various S-band applications, such as a repeater, satellite communication, and radar, owing to its miniaturized chip size and high performance.


2016 ◽  
Vol 9 (2) ◽  
pp. 269-274 ◽  
Author(s):  
Bukuru Denis ◽  
Kaijun Song ◽  
Fan Zhang

A compact dual-band bandpass filter using stub-loaded stepped impedance resonator (SLSIR) with cross-slots is presented. The symmetric SLSIR is analyzed using even- and odd-mode techniques. Design equations are derived and they are used to guide the design of the circuits. Two passbands can be easily tuned by cross-slots and open stubs. Transmission zeros among each passbands are created, resulting in high isolation and frequency selectivity. An experimental circuit is fabricated and evaluated to validate the design concept. The fabricated filter is compact with 19.76 × 12.7 mm2. The measurement results are in good agreement with the full-wave simulation results.


2019 ◽  
Vol 7 (2) ◽  
pp. 34-37
Author(s):  
Abbas Rezaei ◽  
Salah I. Yahya

This work presents a novel microstrip dual-band bandpass filter (BPF) using meandros spirals and patch cells, which is proposed for the first time by this work. It occupies a very compact size of 0.0017 λg2. The proposed filter is designed to operate at Fo1=0.85 GHz and Fo2=1.85 GHz for GSM-850/GSM-1900 applications. In addition to the small size, it has several advantages in terms of wide fractional bandwidths (FBW), low insertion losses and high return losses at both channels. The simulated insertion losses at the lower and upper passbands are 0.05 dB and 0.1 dB, respectively. Another advantage of the proposed BPF of this work is the attenuated harmonics, where it is able to suppress 1st, 2nd, 3rd and 4th harmonics (4.11 Fo1) with -20 dB maximum harmonic level.


2018 ◽  
Vol 10 (4) ◽  
pp. 405-411 ◽  
Author(s):  
Salif N. Dembele ◽  
Ting Zhang ◽  
Jingfu Bao ◽  
Denis Bukuru

AbstractA dual closed-loop stepped impedance resonator (DCLSIR) is investigated and used in designing a compact microstrip bandpass filter (BPF). The proposed DCLSIR is symmetrical; as a result, the symmetric characteristics of the resonator have been used. The design equations are derived and used to support the circuit design. The center frequency, position of transmission zeros, and fractional bandwidth (FBW) are easily tuned by changing the physical dimensions of the resonator. Three transmission zeros are generated to improve the performance in the upper stopband. A DCLSIR prototype BPF is fabricated with a center frequency of 9.3 GHz, and evaluated to validate the design concept. The measured FBW is 9.25%, the insertion loss is 1.58 dB, and the return loss is over 17 dB. The measurement results agree well with the simulation results.


2017 ◽  
Vol 26 (10) ◽  
pp. 1750163 ◽  
Author(s):  
Mohammad Babajanzadeh ◽  
Massoud Dousti

Design, fabrication and measurement of a high-selectivity dual-mode dual-band bandpass filter are presented in this paper. The resonance frequencies of the filter are 1.8[Formula: see text]GHz and 2.4[Formula: see text]GHz which are generated by a meander-loop resonator and a square-loop resonator. The two dual-mode single-band-loop resonators are stacked on each other and create a dual-band bandpass filter. Some advantages of our design are compact size, high selectivity, low loss and also no dependence of two bands, resonance frequencies on each other. The measurement results exhibit that the minimum insertion losses are 0.19[Formula: see text]dB for 1.8[Formula: see text]GHz and 0.32[Formula: see text]dB for 2.4[Formula: see text]GHz. Moreover return losses are better than 43.2[Formula: see text]dB and 40.6[Formula: see text]dB for 1.8[Formula: see text]GHz and 2.4[Formula: see text]GHz, respectively. The proposed filter has a size of [Formula: see text][Formula: see text]mm2. This microstrip filter is fabricated on RT/Duroid6010 substrate with dielectric constant 10.8 and thickness 1.27[Formula: see text]mm and its equivalent circuit is also offered. The measured results exhibit good agreement with the simulated ones.


Frequenz ◽  
2018 ◽  
Vol 72 (11-12) ◽  
pp. 533-537 ◽  
Author(s):  
Jin Xu ◽  
Qi-Hang Cai ◽  
Zhi-Yu Chen

Abstract This paper proposes a wideband bandpass filter (BPF) integrated single-pole double-throw (SPDT) switch by using the capacitively coupled LC resonators with loaded p-i-n diodes. The BPF-integrated on-state channel can be synthesized by using the coupled resonator filter theory, and the off-state channel with high suppression is built due to the misaligned resonant frequencies of LC resonators. As an example, a BPF-integrated SPDT switch is designed and fabricated with the central frequency of 1 GHz and the 3 dB fractional bandwidth of 29.7 %. The on-state channel has a measured insertion loss of 1.23 dB, and a 20 dB rejection wide stopband from 1.47 GHz to 8.6 GHz. The off state channel has a 43 dB suppression around 1 GHz. The isolation between two ports is better than 52.4 dB. The fabricated BPF-integrated SPDT switch size including bias circuits but excluding feeding lines has a compact size of 0.086 λg×0.096 λg.


2021 ◽  
Vol 36 (7) ◽  
pp. 865-871
Author(s):  
Jin Shi ◽  
Jiancheng Dong ◽  
Kai Xu ◽  
Lingyan Zhang

A novel miniaturized wideband bandpass filter (BPF) using capacitor-loaded microstrip coupled line is proposed. The capacitors are loaded in parallel and series to the coupled line, which makes the filter just require one one-eighth wavelength coupled line and achieve filtering response with multiple transmission poles (TPs) and transmission zeros (TZs). Compared with the state-of-the-art microstrip wideband BPFs, the proposed filter has the advantages of compact size and simple structure. A prototype centered at 1.47 GHz with the 3-dB fractional bandwidth of 86.5% is demonstrated, which exhibits the compact size of 0.003λ2 g (λg is the guided wavelength at the center frequency) and the minimum insertion loss of 0.37 dB.


Sign in / Sign up

Export Citation Format

Share Document