Parametric and Controllable Shape Model of the Water-Lubricated Rubber Journal Bearing

2012 ◽  
Vol 455-456 ◽  
pp. 1468-1473
Author(s):  
Xiao Ping Pang ◽  
Jin Chen ◽  
Jia Xu Wang ◽  
Yi Hou

This paper describes a general bearing profile for the water-lubricated rubber journal bearing. Characteristics of the most popular water-lubricated rubber journal bearing, the straight fluted bearing, were deeply analyzed. The bearing profile was expressed using subsection function and a parametric and controllable shape model was built. By adjusting the parameters of the shape model, the existing bearing profiles can be integrated into the shape model and some bran-new bearing profile can be generated from the model. The rigid film thickness equation was achieved using the shape model and the relationship between the load capacity and the parameters of the shape model was established with the neglecting of elastic deformation effect. It is seen that the dimensionless load capacity reduces with the increase of the transition arc radius, the flute radius and the number of flutes,. The Necessity of the research on the bearing profile and the correctness of the shape model are validated. The parametric and controllable shape model is the foundation to study the fluid-solid coupling effect and to carry out the multi-disciplinary cooperating optimization for the water-lubricated rubber journal bearing.

2021 ◽  
pp. 1-17
Author(s):  
Tianyou Yang ◽  
Yanfeng Han ◽  
Yijia Wang ◽  
Guo Xiang

Abstract The purpose of this study is to investigate the role of the misalignment journal, caused by journal elastic deformation, on the transient wear and mixed lubrication performances using a numerical model. In the numerical model, the transient geometry lubrication clearance considering the journal misalignment, the transient elastic deformation and the transient wear depth are incorporated to evaluate the transient film thickness during wear process. The evolutions, under different external loads, of the wear depth, wear rate, elastic deformation, film thickness, fluid pressure and contact pressure are calculated by the numerical model. Furthermore, the calculated results of the misaligned journal bearing are compared with those of the aligned journal bearing. The results show that the distributions of the wear depth, film pressure and elastic deformation are asymmetric along the axial direction and the peak values of them shift toward the back end when the journal misalignment is considered. The maximum wear depth, maximum fluid pressure, maximum contact pressure and maximum elastic deformation of the misaligned journal condition are significantly larger than those of the aligned journal condition.


Author(s):  
Yanfeng Han ◽  
Guo Xiang ◽  
Jiaxu Wang

Abstract The mixed lubrication performance of water-lubricated coupled journal and thrust bearing (simplified as coupled bearing) is investigated by a developed numerical model. To ensure the continuity of hydrodynamic pressure and flow at the common boundary between the journal and thrust bearing, the conformal transformation is introduced to unify the solution domain of the Reynolds equation. In the presented study, the coupled effects between the journal and thrust bearing are discussed. The effects of the thrust bearing geometric film thickness on the mixed lubrication performance, including the load capacity, contact load and friction coefficient, of the journal bearing are investigated. And the effects of the journal bearing eccentricity ratio on the mixed lubrication performance of the thrust bearing are also investigated. The simulated results indicate the mutual effects between the journal and thrust bearing cannot be ignored in the coupled bearing system. The increasing thrust bearing geometric film thickness generates a decrease in load capacity of journal bearing. There exists an optimal eccentricity ratio of journal bearing that yields the minimum friction coefficient of the thrust bearing.


1969 ◽  
Vol 91 (4) ◽  
pp. 641-650 ◽  
Author(s):  
B. J. Hamrock ◽  
W. J. Anderson

A theoretical analysis of the pressure distribution, load, capacity, and attitude angle for a single-step concentric as well as a multistep infinite length eccentric Rayleigh step journal bearing is performed. The results from the single-step concentric analysis indicated that the maximum load capacity is obtained when the film thickness ratio is 1.7 and the ratio of the angle subtended by the ridge to the angle subtended by the pad is 0.35. The results from the infinite length eccentric analysis indicated that one step placed around the journal was optimal. For eccentricity ratios greater than or equal to 0.2 the maximum load occurred for a bearing without a step or a Sommerfeld bearing. For eccentricity ratios less than 0.2 the optimal film thickness ratio is 1.7 while there are three optimal ratios of angle subtended by the ridge to the angle subtended by the pad of 0.4, 0.45, and 0.5 depending on whether load capacity or stability or both load capacity and stability is more important in the application being considered.


Author(s):  
Sanjay R Pawar ◽  
Vikas M Phalle

Hybrid bearings gets worn gradually during the start and stop operation. This wearing leads to change in the geometry of bearing and affects the radical clearance as well as fluid film thickness. Therefore, these discontinuities in the radial clearance can influence the performance characteristics. With the purpose of preventing irreparable failure state of bearing assembly, it is essential to concentrate on the actual changes in the performance parameters of hole entry hybrid conical journal bearing due to wear. In this context, the main aim of this analysis is to predict the performance of hole entry hybrid conical journal bearing employing constant flow valve compensation. Modified Reynolds equation in spherical coordinate form is used to govern the flow of lubricant in the narrow region between journal and conical bearing. The solution to this Reynolds equation is obtained by finite element analysis with appropriate boundary conditions. This paper summarizes that for a given bearing with constant flow valve as compensating element, the wear causes variation in lubricant film thickness, which strongly affects load capacity, pressure generated, and dynamic performance parameters.


1959 ◽  
Vol 81 (2) ◽  
pp. 245-252 ◽  
Author(s):  
F. W. Ocvirk ◽  
G. B. DuBois

A method of relating surface finish to minimum oil-film thickness and the corresponding load capacity of plain journal bearings is presented with supporting experimental data. The effect of clearance on load capacity and friction are shown on graphs indicating an optimum bearing clearance.


A theoretical investigation is made to study the way in which thermal distortion of bearing components modifies the characteristics of journal bearings. The thermoelastic treatment developed is two-dimensional and incorporates an existing thermohydrodynamic analysis. It is applied to circular and partial arc bearings for a range of parametric groups governing the bearing operation. The results show that for a fixed journal position, the effect of thermal distortion is to reduce the minimum film thickness, increase the load capacity, increase the peak temperatures and pressures, and also to enhance considerably the stability of the bearing. The effects are more marked for larger oil-lubricated bearings and higher speeds of operation and it is suggested that discrepancies observed between experimental results and existing theory could be largely explained by this phenomenon.


2013 ◽  
Vol 319 ◽  
pp. 505-509 ◽  
Author(s):  
Xiao Ping Pang ◽  
Jin Chen

This paper is focused on multi-objective optimization to find the best performance related to the geometrical design of the hydrodynamic journal bearing in three dimensions 3D. The mathematical model for 3D film thickness profile was driven using Fourier’s series function and axial waviness value to represent in circumferential and axial direction respectively. A Goal attainment function was used as an optimization tool with goals to minimize the power loss and side leakage and to maximize the load capacity, while the amplitude (a), number of wave (m) and Fourier's series coefficients of the general film thickness were taken as design variables subjected to several bounds and constraints. The optimized results show the cylindrical plain bearing is the best to load capacity due to changing the axial shape does not enhance the load capacity without violation of the minimum film thickness. Comparison was made between goal attainment multi-objective optimization and GA single-objective optimization. The new method for shape optimization based on 3D general film thickness is more evident than GA.


2015 ◽  
Vol 35 (5) ◽  
pp. 886-893
Author(s):  
Thiago M. Machado ◽  
Kléber P. Lanças ◽  
Mauro B. de Oliveira Junior ◽  
José A. Artioli ◽  
Indiamara Marasca

ABSTRACT The power consumption and load capacity of agricultural machines have grown and the effects of pressure on the soil by tires have been still little investigated. In concern with sustainable development, the relationship machine-tire-soil must be in balance to give more consistency on the best use of tires for a given load. This study aimed to evaluate four tires of two constructive types, the bias belted tires and radial tires, both with respective rim diameters of 22.5 and 26.5 inches with variables measuring the footprint, elastic deformation, sinkage and resistance to penetration. A hydraulic press with an attachment shaft for tire mounting and a box of soil in which the tire has been imposed on a load of 53.00 kN using nominal pressures recommended by the tire manufacturer. The radial construction tire with rim diameter of 26.5 inches obtained less sinkage and resistance to penetration; however, greater elastic deformation and footprint compared to other tires. The bias-belted tire with 22.5-inch rim presented the highest resistance to penetration and the lowest elastic deformation.


Author(s):  
Baisong Yang ◽  
Jiale Tian ◽  
Jian Zhou ◽  
Lie Yu

A theoretical analysis has been done to investigate the static performance of short hydrodynamic journal bearings with a generalized film thickness expression by a sum of Fourier series equation. The hydrodynamic film thickness was written into a summation of an infinite harmonic component of trigonometric function. Reynolds equation with short bearing theory is solved for steady-state operations. In this paper, the steady-state analysis of the generalized hydrodynamic bearing has been done and compared with some typical journal bearings with respect to their harmonic components of film thickness, pressure distribution and load capacity. The relationship between the k-th order harmonic component of the film thickness H0,k and the static pressure component P0,k was established. It was found that the value of P0,k is directly determined not only by the k-th order harmonic component H0,k but also the (k−1)-th order component P0,k−1 indirectly produced by the previous harmonic component H0,k−1.This new investigation method can used to improve the performance of hydrodynamic journal bearings for shape optimization of hydrodynamic journal bearings.


Author(s):  
Jiale Tian ◽  
Baisong Yang ◽  
Lie Yu ◽  
Jian Zhou

As one of the most important components in a rotor-bearing system, journal bearings provide proper support and damping to the rotor so that it can run both smoothly and efficiently and keep stable under different working conditions. As the rotating speed of the rotor growing faster and load getting heavier, the traditional cylinder journal bearing can no longer meet the demand of stabilizing the rotor, so different kinds of non-circular journal bearings were invented, such as elliptical bearing, multi-lobe bearing, wave bearing and etc., to provide better stability and greater load capacity. However, these kinds of non-circular bearings were mostly designed by experience of the engineers, and also the current hydrodynamic bearing design methodology still depends on empirical design. There lacks of corresponding theoretical foundation. In order to develop a theoretical method for bearing designing, an innovative analyzing approach needs to be carried out to explore the mechanism of the bearings and its performance. In this paper, a new approach is presented focusing on the profile of each bearing and their film thickness. A universal mathematical expression for different types of non-circular bearings has been put forward based on the Fourier series theory. The influence of periodic harmonics of film thickness on the static performance of non-circular bearings of finite length is studied for incompressible lubricant. The results show that the film thickness can always be expanded into a Fourier series, and the harmonic components of film pressure can be obtained by solving the Reynolds equation. Finally, the relation between the k-th order harmonic component H0,k and the corresponding static pressure component P0,k is established. This new investigation can be used to improve the non-circular bearing designing methodology with theoretical guidance.


Sign in / Sign up

Export Citation Format

Share Document