A Multi-Resolution PID Controller Based on the Wavelet Transform

2012 ◽  
Vol 472-475 ◽  
pp. 632-636 ◽  
Author(s):  
Cun Zhi Yao ◽  
Gui Xiang Zhang

The non-linear and time-varying natures of the process together with the large disturbances of several types are the key challenge for the control design. A controller based on multi- resolution decomposition using wavelets is presented in the paper. The wavelet is used to decompose the error signal into signals at different scales.These signals are then used to compensate for the uncertainties in the plant.The controller is similar to proportional integral derivative controller in principle and application. the output from this control system represents the cumulative effect of uncertainties such as measurement noise, frictional variations and external torque disturbances which manifest at different scales. This controller better solves the nonlinear and time-varying togetther with the great disturbance.

2020 ◽  
Vol 42 (13) ◽  
pp. 2465-2474
Author(s):  
Halil Erol

This article is devoted to stability analysis of generator excitation control system that has some time delay with fractional order proportional integral derivative controller by using direct method. When the time delay exceeds certain critical values, the excitation control system becomes unstable. In order to obtain more delay margin, in control part of the system, fractional order proportional integral derivative controller is used. A formulation is obtained to find out the maximum time delay which is known as delay margin with which the system can tolerate without any loss in its stability. All the possible stability regions analytically in the parametric space of the time delay is obtained by using an exact method and it is presented in this study. The method is formulated in frequency domain. The time-domain simulations are implemented to validate theoretical delay margin results in Matlab/Simulink. When it is compared with previous researches in literature, better stability margin is obtained. The results have shown that fractional order PID controller gives wide stability area than integer order PID controller.


2017 ◽  
Vol 79 (6) ◽  
Author(s):  
Andi Adriansyah ◽  
Shamsudin H. M. Amin ◽  
Anwar Minarso ◽  
Eko Ihsanto

The rapid development of microprocessor, electrical, sensors and advanced control technology make a quadrotor fast expansion. Unfortunately, a quadrotor is unstable and impossible to fly in fully open loop system. PID controller is one of methodology that has been proposed to control the flight control system. Unfortunately, adjustment of PID parameters for robust control performance is not easy and still problems. The paper proposed a flight controller system based on a PID controller. The PID parameters are tuned automatically using Particle Swarm Optimization (PSO). Objective of this method is to improve the flight control system performance. Several experiments have been performed. According to these experiments the proposed system able to generate optimal and reliable PID parameters for robust flight controller. The system also has 41.57 % improvement in settling time response.


2020 ◽  
Vol 26 (17-18) ◽  
pp. 1574-1589
Author(s):  
Mohammad Javad Mahmoodabadi ◽  
Nima Rezaee Babak

Proportional–integral–derivative is one of the most applicable control methods in industry. Although it is simple and effective in most cases, it does not provide robustness against disturbances and may not perform well in cases with uncertainties and nonlinearities. In this study, a fuzzy adaptive robust proportional–integral–derivative controller is used to control a nonlinear 4 degree-of-freedom quadrotor. An adaptation mechanism is submitted to the proportional–integral–derivative controller for updating the proportional, derivative, and integral gains of proportional–integral–derivative control. Furthermore, a sliding surface is generated and submitted to the adaptation mechanism for better regulation of proportional–integral–derivative gains. Afterward, a fuzzy engine is applied to regulate the sliding surface for better performance of the adaptive proportional–integral–derivative when there are disturbance and uncertainties. The multi-objective grasshopper optimization algorithm is implemented on the control system for the regulation of the control system parameters to minimize the error and control effort of the proposed hybrid control system. Finally, the obtained results are presented for a nonlinear 4 degree-of-freedom multi-purpose (for marine, ground, and aerial maneuvers) quadrotor system designed and built in Sirjan University of Technology, Sirjan, Iran, to assure the effectiveness of this technique.


2013 ◽  
Vol 315 ◽  
pp. 616-620 ◽  
Author(s):  
Mona Tahmasebi ◽  
Roslan Abdul Rahman ◽  
Musa Mailah ◽  
Mohammad Gohari

Distribution pattern of spray boom in fields is affected by several parameters which one of the important reasons is horizontal and vertical vibrations because of unevenness surfaces. Spray boom movements lead to decrease of spread efficiency and crop yield. Generally, active suspension is employed to control and attenuate the vibration of sprayer booms because these suspensions reduce the high frequency vibration of spray booms thanks to irregularities soil. In this research, a proportional-integral-derivative controller with active force control is used to remove undesired rolling of spray boom. Simulation results depict that the proposed scheme is more effective and accurate than PID control only scheme. The AFC based scheme shows the robustness and accuracy compared to the PID controller.


Author(s):  
Saidi Hemza ◽  
Djebri Boualem

In this work, the mechanical and electrical components are designed and realised for an octocopter. The designed system dynamic model is supported with Euler-Lagrangian model and Newton-Euler model respectively for the rotational and transnational movements of the drone. The prototype octocopter is also equipped with a proportional integral derivative controller to feedback both location and respond to the external environment.


Author(s):  
Vladimir Milic ◽  
Srecko Arandia-Kresic ◽  
Mihael Lobrovic

This paper is concerned with the synthesis of proportional–integral–derivative (PID) controller according to the [Formula: see text] optimality criterion for seesaw-cart system. The equations of dynamics are obtained through modelling a seesaw-cart system actuated by direct-current motor via rack and pinion mechanism using the Euler–Lagrange approach. The obtained model is linearised and synthesis of the PID controller for linear model is performed. An algorithm based on the sub-gradient method, the Newton method, the self-adapting backpropagation algorithm and the Adams method is proposed to calculate the PID controller gains. The proposed control strategy is tested and compared with standard linear matrix inequality (LMI)-based method on computer simulations and experimentally on a laboratory model.


2016 ◽  
Vol 28 (5) ◽  
pp. 722-729 ◽  
Author(s):  
Zhe Guan ◽  
◽  
Shin Wakitani ◽  
Toru Yamamoto ◽  

[abstFig src='/00280005/15.jpg' width='300' text='Schematic figure of data-oriented GPC-PID controller' ] This paper presents a data-oriented technique for designing a proportional-integral-derivative (PID) controller based on a generalized predictive control law for linear unknown systems. In several control design approaches, a model-based control theory, which requires accurate modeling and identification of the plant, is used to calculate the control parameters. However, in higher-order systems and/or systems with an unknown time delay such as chemical industries and thermal industries, it is difficult to model or identify the plant accurately. Over the last decade, data-oriented techniques in which the online or offline data are utilized have been attracting considerable attention. Designing the controllers for unknown plants based on only the input/output data is the main feature of this technique. In this study, controller parameters are first obtained by using a generalized predictive control law with the data-oriented technique, and are converted to PID parameters from the practical point of view. The proposed method is validated experimentally using a real injection-molding machine. The results demonstrate the efficiency of the proposed method.


2014 ◽  
Vol 716-717 ◽  
pp. 1540-1544
Author(s):  
Ting Gong ◽  
Hui Yan

The cruise control system has the highly nonlinear and time-varying uncertainty, and it will also influenced by the outside disturbance and complex operating conditions, and it is difficult to obtain a satisfied effect by using traditional PID control. In this paper, the auto cruise control system is designed based on fuzzy PI and fuzzy PD control algorithm, and the simulated effect is also provided.


Author(s):  
W Zuo

This paper presents an unconventional approach to design of an adaptive digital PID (proportional integral derivative) controller for multivariable plants, which includes two parts: a fast online recursive identifier to provide updated model parameters of the plant and a genetic tuner, which is based on artificial genetic algorithms, to tune on-line the parameter matrices of the controller. An example is presented to show the effectiveness of the approach.


Author(s):  
Rashid Alzuabi

This paper presents an exercise in applying the bacterial foraging algorithm (BFA) optimisation method on a proportional—integral-derivative controller (PID) of a DC motor circuit. The paper presents the system description of the DC motor transfer function and the simulation of the close loop system using MATLAB. The BFA algorithm is described and discussed with the simulation results presented to illustrate the enhancement of the system response that in result enhances the operation of the DC motor system.


Sign in / Sign up

Export Citation Format

Share Document