Cement-Bonded Chip Boards Using Hemp and Energy by-Products in Civil Engineering

2012 ◽  
Vol 512-515 ◽  
pp. 2956-2960
Author(s):  
Tomáš Melichar ◽  
Jiří Bydžovský ◽  
Šárka Keprdová

The aim of the research presented in this article was studying the basic physico-mechanical parameters of cement-bonded chip boards with hemp used as filler and by-products of energy production applied when modifying the bonding component. Determining and evaluating the basic parameters of boards of modified composition allowed for assessment of the effect of adding or substituting the bonding component within the cement chip board matrix. The work focused on the flexural strength, modulus of elasticity and density. In terms of anomalies in the cement matrix, i.e. uncommon crystalline phases in cement composites, representative samples were selected for differentially thermal and X-ray diffraction analysis.

2018 ◽  
Vol 170 ◽  
pp. 03030 ◽  
Author(s):  
Rustem Mukhametrakhimov ◽  
Liliya Lukmanova

The paper studies features of the hydration process of the modified blended cement for fiber cement panels (FCP) using differential thermal analysis, X-ray diffraction analysis, electron microscopy and infrared spectroscopy. It is found that deeper hydration process in silicate phase, denser and finer crystalline structure form in fiber cement matrix based on the modified blended cement. Generalization of this result to the case of fiber cement panels makes it possible to achieve formation of a denser and homogeneous structure with increased physical and mechanical properties.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2014 ◽  
Vol 805 ◽  
pp. 343-349
Author(s):  
Carine F. Machado ◽  
Weber G. Moravia

This work evaluated the influence of additions of the ceramic shell residue (CSR), from the industries of Lost Wax Casting, in the modulus of elasticity and porosity of concrete. The CSR was ground and underwent a physical, chemical, and microstructural characterization. It was also analyzed, the environmental risk of the residue. In the physical characterization of the residue were analyzed, the surface area, and particle size distribution. In chemical characterization, the material powder was subjected to testing of X-ray fluorescence (XRF). Microstructural characterization was performed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The residue was utilized like addition by substitution of cement in concrete in the percentages of 10% and 15% by weight of Portland cement. It was evaluated properties of concrete in the fresh and hardened state, such as compressive strength, modulus of elasticity, absorption of water by total immersion and by capillarity. The results showed that the residue can be used in cement matrix and improve some properties of concrete. Thus, the CSR may contribute to improved sustainability and benefit the construction industry.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1080
Author(s):  
Aghiles Hammas ◽  
Gisèle Lecomte-Nana ◽  
Imane Daou ◽  
Nicolas Tessier-Doyen ◽  
Claire Peyratout ◽  
...  

In recent decades, talc and kaolinite have been widely used as raw materials for the ceramic industry. In this study, the final characteristics of kaolinitic clay mixed with 6 mass% of magnesite obtained in our previous work were compared with those obtained with mixtures of kaolin (kaolin BIP) and talc (as the source of magnesium oxide). However, different amounts of talc in the kaolin powder were studied, namely 10, 30, and 50 mass% of added talc (with respect to kaolin + talc). The tape casting process was used during this work in order to manufacture the green tapes in an aqueous system with 0.2 mass% of dispersant. Subsequently, the green tapes were heated to 1000 and 1100 °C with a dwelling time of 12 min. The green and sintering tapes were characterized using the following techniques: DTA/TG, X-ray diffraction, porosity, and flexural strength analyses. The results obtained from our previous work indicate that the specimen with 6 mass% of MgCO3 sintered at 1200 °C for 3 h exhibited the best performances, with high flexural strength and weak porosity value—117 MPa and 27%—respectively. As results from this study, the optimal mechanical and thermal properties of sintering tapes were obtained for the specimen with 10 mass% of added talc sintered at 1100 °C. Indeed, this specimen exhibited 50 MPa and 43% of stress to rupture and apparent porosity, respectively.


2020 ◽  
Vol 12 (18) ◽  
pp. 7340
Author(s):  
Jessica Giro-Paloma ◽  
Joan Formosa ◽  
Josep M Chimenos

Low-grade magnesium oxide (LG-MgO) was proposed as ordinary Portland cement (OPC) or lime substitute (CaO) for metal(loid)s remediation in contaminated soils. Some metal(loid)s precipitate at pH ≈ 9 in insoluble hydroxide form thus avoiding their leaching. LG-MgO avoids the re-dissolution of certain metal(loid)s at 9.0 < pH < 11.0 (pH-dependents), whose solubility depends on the pH. A highly contaminated soil with heavy metal(loid)s was stabilized using different LG-MgO by-products sources as stabilizing agents. Two of the three studied LG-MgOs were selected for the stabilization, by mixing 5, 10, and 15 wt.%. The effect of using LG-MgO not only depends on the size of the particles, but also on those impurities that are present in the LG-MgO samples. Particle size distribution, X-ray fluorescence (XRF), X-ray diffraction (XRD), thermogravimetric analysis, citric acid test, specific surface, bulk density, acid neutralization capacity, batch leaching tests (BLTs), and percolation column tests (PCTs) were techniques used to deeply characterize the different LG-MgO and the contaminated and remediated soils. The remediation’s results efficacy indicated that when the medium pH was between 9.0 and 11.0, the concentration of pH-dependent metal(loid)s decreases significantly. Although around 15 wt.% of a stabilizing agent was appropriate for the soil remediation to ensure an alkali reservoir that maintains optimal stabilization conditions for a long period, 5 wt.% of LG-MgO was enough to remedy the contaminated soil. When evaluating a polluted and decontaminated soil, both BLTs and PCTs should be complementary procedures.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
N. Mohamed Sutan ◽  
I. Yakub ◽  
M. S. Jaafar ◽  
K. A. Matori ◽  
S. K. Sahari

There are environmental and sustainable benefits of partially replacing cement with industrial by-products or synthetic materials in cement based products. Since microstructural behaviours of cement based products are the crucial parameters that govern their sustainability and durability, this study investigates the microstructural comparison between two different types of cement replacements as nanopozzolan modified cement (NPMC) in cement based product by focusing on the evidence of pozzolanic reactivity in corroboration with physical and mechanical properties. Characterization and morphology techniques using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM) were carried out to assess the pozzolanic reactivity of cement paste modified with the combination of nano- and micro silica as NPMC in comparison to unmodified cement paste (UCP) of 0.5 water to cement ratio (w/c). Results were then substantiated with compressive strength (CS) results as mechanical property. Results of this study showed clear evidence of pozzolanicity for all samples with varying reactivity with NPMC being the most reactive.


2009 ◽  
Vol 24 (1_suppl) ◽  
pp. 113-124 ◽  
Author(s):  
Qin Lian ◽  
Dichen Li ◽  
Zhongmin Jin ◽  
Jue Wang ◽  
Aimin Li ◽  
...  

A rapid prototyping and rapid tool technique-based method was developed to fabricate chitosan fiber calcium phosphate cement composites (CF/CPC) for bone tissue engineering scaffold applications. The products were characterized and the in vitro performance with canine bone marrow stem cells (BMCs) on CF/CPC scaffold with controlled fiber structures evaluated. The X-ray diffraction analysis showed that about 91% of the inorganic part of the CF/CPC scaffold was hydroxyapatite (HA) and the variation in CF had little effect on the percentage of HA content. The results from in vitro study demonstrated that the interconnected macropores rapidly formed inside the CF/CPC scaffolds and that the patterns were related to the fiber structures used. The differences in the fiber structures altered the morphology of the BMCs without affecting the proliferation of the BMCs.


2020 ◽  
Vol 10 (23) ◽  
pp. 8705
Author(s):  
Gankhuyag Burtuujin ◽  
Dasom Son ◽  
Indong Jang ◽  
Chongku Yi ◽  
Hyerin Lee

Rebar embedded inside reinforced concrete structures becomes corroded due to various factors. However, few studies have focused on the corrosion of pre-rusted rebar embedded in cement composites, and the findings reported thus far are inconsistent. Therefore, in this study, an experimental program was undertaken to examine the effect of pre-rusting on the further corrosion of reinforcements in cement composites. Pre-rust was induced using two different solutions (CaCl2 and HCl). The corrosion rate in the cement composite was analyzed using the half-cell potential and polarization resistance methods. In addition, scanning electron microscopy with energy-dispersive X-ray analysis and X-ray diffraction analysis were used to examine the morphology of the rust. The results show that the corrosion rate of the rebar embedded in the cement composite can be increased by more than 3.8 times depending on the pre-rust conditions (RE: 0.0009 mm/year, HCl: 0.0035 mm/year). In addition, we found that the corrosion products in the pre-rusted layer were comparable to those of the rebar corroded in the marine atmosphere.


1995 ◽  
Vol 50 (4) ◽  
pp. 649-660 ◽  
Author(s):  
Cornelius G. Kreiter ◽  
Wolfgang Michels ◽  
Gerhard Heeb

Decacarbonyldirhenium (1) reacts upon UV irradiation with allene (2), 1,2-butadiene (3) and 2,3-pentadiene (4) preferentially by CO substitution and oxidative rearrangement to the corresponding enneacarbonyl-μ-η1:3-endiyl-dirhenium complexes 5, 9, and 15 and to the octacarbonyl-μ-η2:2-allene-dirhenium complexes 6, the stereoisomers 10, 11, and 16. At elevated temperature 5, 9, and 15 loose CO and yield by a reductive rearrangement also the complexes 6, 10, 11, and 16. In addition to these main products, depending upon the allene derivative used, various by-products are obtained.By-products of the reaction o f 1 with 2 are octacarbonyl-μ-η3:3-(2,3-dimethylene-buta-1,4- diyl)dirhenium (7) and μ-η2:2-allene-hexacarbonyl-μ-η1:3-1-propene-1,3-diyl-dirheniurn (8). The photo reaction of 1 with 3 yields, in addition to 9-11, tetracarbonyl-η3-(E-5-ethylidene- 4-methyl-2-cyclopenten-1-yl)rhenium (12) and tetracarbonyl-η3-(Z-5-ethyliden-4- methyl-2-cyclopenten-1-yl)rhenium (13) as a mixture of isomers. 1 and 4 form the by-products tetracarbonyl-η3-(EZ-3-penten-2-yl)rhenium (17), tetracarbonyl-η3-(EE-3-penten-2-yl)rhenium (18) and heptacarbonyl-μ-η1:2:1:2-(4,5-dimethyl-2,6-octadiene-3,6-diyl)dirhenium (19) with an unusually bridging and chelating ligand. The constitutions of the reaction products have been concluded from the IR and 1H NMR spectra. For 19 the crystal and molecular structure has been determined by X-ray diffraction analysis.


2016 ◽  
Vol 71 (3) ◽  
pp. 249-265 ◽  
Author(s):  
Christina Taouss ◽  
Peter G. Jones

AbstractDiphosphanegold(I) complexes of the form dppmEAuX [dppm = bis(diphenylphosphano)methane, E = S, Se; X = Br, I], dppeEAuX [dppe = 1,2-bis(diphenylphosphano)ethane; E = O, S; X = Br, I] and dppbzEAuX [dppbz = 1,2-bis(diphenylphosphano)benzene; E = S, Se, X = Br, I] were treated with elemental X2. With dppm, the three products [dppmEAuX2]+X3– (E = S, X = Br (1), I (2); E = Se, X = I (3) were obtained in quantitative yield. These are gold(III) complexes involving a five-membered ring . With dppe, the only related product was [dppeEAuBr2]+Br3– (4), in which the central ring is six-membered with two carbon atoms. These dppe systems are very sensitive to oxidation/hydrolysis of the ligand, and several such unintended products were isolated and identified. The reaction of dppbzSAuBr with bromine leads to [dppbzS]2+[AuBr4]–Br– (5), the dication of which is formally 1,1,3,3-tetraphenylbenzo[d]-2-thia-1, 3-diphosphol-1,3-diium and contains a central five-membered ring . The dications are associated with the bromide anions via S…Br contacts of ca. 3.1 Å to form inversion-symmetric S2Br2 rings. The halogenation of the dppbzSe derivatives leads to loss of selenium and formation of dppbzAuBr3 (6), with [4+1] coordination at gold, or the known compound [dppbzAuI2]+I3– (7). All products 1–6 were subjected to X-ray diffraction analyses, as were four hydrolysis products 4a–d and two further by-products [5(thtBr+)·2Br3–·3(AuBr4–)] (1a) and (tht)AuBr3 (1b). Compound 1a displays unusually short Br…Br contacts of 3.2398(8) Å between neighbouring tetrabromidoaurate(III) ions.


Sign in / Sign up

Export Citation Format

Share Document