Vibration Characteristic Analysis and Research of High Speed Dynamic Balancing Machine

2012 ◽  
Vol 529 ◽  
pp. 180-185
Author(s):  
Qing Lei Zhang ◽  
Hai Ou Shen ◽  
Bai Yu Zhao ◽  
Jing Kuan Guo

Dynamic performance of high speed dynamic balancing machine directly affects the accuracy and safety of dynamic balancing machine. ANSYS 12.0 was used to establish the frame structure model in this paper. The four models of dynamic balancing machine were calculated respectively. The calculation results show that additional stiffness can greatly improve the natural frequencies of dynamic balancing machine. In addition, as the base is large, we can ignore the influence on natural frequencies caused by the base.

Author(s):  
Haitao Luo ◽  
Guangming Liu ◽  
Shipeng Chen ◽  
Wei Wang ◽  
Peng Wang

2012 ◽  
Vol 503 ◽  
pp. 118-121
Author(s):  
Zhen Lu Wang ◽  
Xue Jin Shen ◽  
Ling Zhou ◽  
Xiao Yang Chen

This paper is focused on the finite element analysis (FEA) and theoretical calculation of vibration characterization of V-shaped electrothermal microactuator. A vibration mechanical model about V-shaped electrothermal microactuator is presented. By having a comparison between FEA and theoretical calculation about natural frequencies of V-shaped electrothermal microactuator, the maximum error is within 0.19 %. This paper also analyzes the influences of microactuator geometric parameters on natural frequency. The length and thickness have larger effect on the natural frequency of the actuator, while the angle and width have less effect on the natural frequency.


2013 ◽  
Vol 351-352 ◽  
pp. 808-811
Author(s):  
Zheng Zhang ◽  
Xue Feng Cai ◽  
Yong Chao Ma ◽  
Ji Zhong Zhou

Light steel temporary building is commonly used in the construction site, with advantages on simple structure, repeat used and small deadweight. For light steel temporary structure building there are still not enough researches on the mechanical properties and mechanism of action, and there are still not enough relevant standards and requirements to conduct the design and construction of the buildings. In order to precede to theoretical study on frame structure of light steel temporary buildings a method by Finite Element Analysis was proposed. This method is based on FEA software, Ansys. Using this method a monolayer frame structure and a two-story frame structure and a trilaminar frame structure model were analyzed. The calculation results of horizontal displacements under design loads by FEA were obtained and discussed.


2013 ◽  
Vol 385-386 ◽  
pp. 324-328
Author(s):  
Xiao Hua Song ◽  
Shao Long Wu

This paper describes the inherent characteristics, dynamic response and dynamic stability dynamics of vibration capability that impacts of high-speed electric spindle. Taking the high-speed, high-power electric spindle milling center on as the object of the research, modal analyzing of electric spindle with the finite element software ANSYS Workbench, researching the spindle modes, natural frequencies and critical speed of electric spindle, to get each frequency and vibration type, pointed the affection of what spindle away from the anti-vibration frequency requirements, well before bearing stiffness and damping of the vibration to the spindle system. It provides the necessary basis for further dynamic analysis by modal analysis.


2011 ◽  
Vol 308-310 ◽  
pp. 1152-1155
Author(s):  
Zhi Wei Zhang ◽  
Wei Zhang ◽  
Jin Chun Song ◽  
Song Li

This paper focuses on a general weight lightening method of machine tool's key moving parts based on frequency topology optimization and dimension optimization using Ansys workbench and Ansys classic interface. First, preparations of frequency topology optimization, including setting material, applying constraints and loads, meshing of the high-speed turning center HTC2550hs slide board were done in Ansys Workbench; Second, frequency topology optimization was performed in Ansys classic interface, and the preliminary light weighted model of the slide board was obtained; then, for important parameters of the removal parts that affect slide board's dynamic performance much, dimension optimization was performed. Finally, we achieve that the slide board's weight is reduced by 11.03%, while its first and second natural frequencies are increased.


2013 ◽  
Vol 415 ◽  
pp. 431-435 ◽  
Author(s):  
Feng Wei Xue ◽  
Ji Ping Zhou ◽  
Ke Wang ◽  
Jun Yong Zhan

To improve dynamic properties of frame structure uses the method of sensitivity analysis of optimizing the thicknesses. And adopting the way of combining the partial sensitivity analysis with global sensitivity analysis finds out important design parameters, which can ensure the ideal dynamic performance of the frame structure and make the frame light in weight.


Author(s):  
Cornelius J. Barnard ◽  
Sébastien Briot ◽  
Stéphane Caro

Currently parallel robots are finding more and more acceptance in high-speed pick-and-place operations. As for all high-speed mechanisms, vibratory phenomena appear and deteriorate accuracy and dynamic performance at the terminal positions of the pick-and-place path. This paper aims to evaluate the effectiveness of several pick-and-place trajectories in terms of vibration reduction. To address this problem, an elastodynamic model of a five bar mechanism is developed and its behaviour is simulated as it traverses each trajectory. Spectral analysis of the vibrations allows the quality of the vibration reduction to be quantified. The results show that the first and second natural frequencies of the system are excited. It is also shown that long cycle times with smooth motion profiles improve residual error norms, but are outperformed by their discontinuous counterparts when short cycle times are imposed.


2019 ◽  
Vol 12 (4) ◽  
pp. 339-349
Author(s):  
Junguo Wang ◽  
Daoping Gong ◽  
Rui Sun ◽  
Yongxiang Zhao

Background: With the rapid development of the high-speed railway, the dynamic performance such as running stability and safety of the high-speed train is increasingly important. This paper focuses on the dynamic performance of high-speed Electric Multiple Unit (EMU), especially the dynamic characteristics of the bogie frame and car body. Various patents have been discussed in this article. Objective: To develop the Multi-Body System (MBS) model of EMU, verify whether the dynamic performance meets the actual operation requirements, and provide some useful information for dynamics and structural design of the proposed EMU. Methods: According to the technical characteristics of a typical EMU, a MBS model is established via SIMPACK, and the measured data of China high-speed railway is taken as the excitation of track random irregularity. To test the dynamic performance of the EMU, including the stability and safety, some evaluation indexes such as wheel-axle lateral forces, wheel-axle lateral vertical forces, derailment coefficients and wheel unloading rates are also calculated and analyzed in detail. Results: The MBS model of EMU has better dynamic performance especially curving performance, and some evaluation indexes of the stability and safety have also reached China’s high-speed railway standards. Conclusion: The effectiveness of the proposed MBS model is verified, and the dynamic performance of the MBS model can meet the design requirements of high-speed EMU.


2017 ◽  
Vol 2 (4) ◽  
pp. 25
Author(s):  
L. A. Montoya ◽  
E. E. Rodríguez ◽  
H. J. Zúñiga ◽  
I. Mejía

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4705
Author(s):  
Julian Lich ◽  
Tino Wollmann ◽  
Angelos Filippatos ◽  
Maik Gude ◽  
Juergen Czarske ◽  
...  

Due to their lightweight properties, fiber-reinforced composites are well suited for large and fast rotating structures, such as fan blades in turbomachines. To investigate rotor safety and performance, in situ measurements of the structural dynamic behaviour must be performed during rotating conditions. An approach to measuring spatially resolved vibration responses of a rotating structure with a non-contact, non-rotating sensor is investigated here. The resulting spectra can be assigned to specific locations on the structure and have similar properties to the spectra measured with co-rotating sensors, such as strain gauges. The sampling frequency is increased by performing consecutive measurements with a constant excitation function and varying time delays. The method allows for a paradigm shift to unambiguous identification of natural frequencies and mode shapes with arbitrary rotor shapes and excitation functions without the need for co-rotating sensors. Deflection measurements on a glass fiber-reinforced polymer disk were performed with a diffraction grating-based sensor system at 40 measurement points with an uncertainty below 15 μrad and a commercial triangulation sensor at 200 measurement points at surface speeds up to 300 m/s. A rotation-induced increase of two natural frequencies was measured, and their mode shapes were derived at the corresponding rotational speeds. A strain gauge was used for validation.


Sign in / Sign up

Export Citation Format

Share Document