Tellurium Recovery from the Unique Tellurium Ores

2012 ◽  
Vol 549 ◽  
pp. 1060-1063 ◽  
Author(s):  
Ya Fei Guo ◽  
Nan Zhang ◽  
Dong Chan Li ◽  
Fa Mang Tang ◽  
Tian Long Deng

Generally, along with the rapid economic development in our country, the requirement of mineral resource is gradually increasing. Compared with the traditional metallurgy, the biohydrometallurgy has the merit of light damage of environment, low cost, and a few investments, and then it can treat with very low-grade ores even industrial disposals. Since the discovery of scattered elemental tellurium deposit in China, the development and utilization of this unique independent tellurium ores were studied. In this paper, firstly, the progresses on tellurium recovery process from the unique tellurium ores were summarized, and then, the experimental results on bioleaching in our lab were presented.

2020 ◽  
Author(s):  
S. Ramesh Sakthivel ◽  
Md Azizurrahaman ◽  
V. Ganesh Prabhu ◽  
V. M. Chariar

Abstract Past studies have shown that phosphate recovery in the form of struvite is relatively a simple process, which can be achieved by adding a magnesium source in stored urine. However, struvite recovery process at a decentralised level becomes uneconomical due to high input cost of magnesium salts and operational cost. While use of cheaper alternative magnesium sources such as bittern, low-grade MgO and wood ash could lead to partial cost reduction, it is also important to reduce the overall operational costs to make struvite recovery process economically viable and sustainable. In this study, a continuous flow reactor was developed for low-cost struvite recovery from stored urine at decentralised community scale operations. Our study revealed that over 81.2% of phosphate present in urine can be recovered in the form of struvite. Comparison of results from stirred and unstirred experiments shows that higher recovery efficiency is obtained due to minimal loss of fines. Operation and financial assessment of the process shows that struvite recovery can be profitable due to continuous operation of the reactor requiring minimal process control and manpower requirement.


2020 ◽  
Vol 2020 (15) ◽  
pp. 350-1-350-10
Author(s):  
Yin Wang ◽  
Baekdu Choi ◽  
Davi He ◽  
Zillion Lin ◽  
George Chiu ◽  
...  

In this paper, we will introduce a novel low-cost, small size, portable nail printer. The usage of this system is to print any desired pattern on a finger nail in just a few minutes. The detailed pre-processing procedures will be described in this paper. These include image processing to find the correct printing zone, and color management to match the patterns’ color. In each phase, a novel algorithm will be introduced to refine the result. The paper will state the mathematical principles behind each phase, and show the experimental results, which illustrate the algorithms’ capabilities to handle the task.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2436
Author(s):  
Abubakar Sadiq Mohammed ◽  
Martina Meincken

Low-cost wood–plastic composites (WPCs) were developed from invasive trees and recycled low-density polyethylene. The aim was to produce affordable building materials for low-cost social housing in South Africa. Both raw materials are regarded as waste materials, and the subsequent product development adds value to the resources, while simultaneously reducing the waste stream. The production costs were minimised by utilising the entire biomass of Acacia saligna salvaged from clearing operations without any prior processing, and low-grade recycled low-density polyethylene to make WPCs without any additives. Different biomass/plastic ratios, particle sizes, and press settings were evaluated to determine the optimum processing parameters to obtain WPCs with adequate properties. The water absorption, dimensional stability, modulus of rupture, modulus of elasticity, tensile strength, and tensile moduli were improved at longer press times and higher temperatures for all blending ratios. This has been attributed to the crystallisation of the lignocellulose and thermally induced cross-linking in the polyethylene. An increased biomass ratio and particle size were positively correlated with water absorption and thickness swelling and inversely related with MOR, tensile strength, and density due to an incomplete encapsulation of the biomass by the plastic matrix. This study demonstrates the feasibility of utilising low-grade recycled polyethylene and the whole-tree biomass of A. saligna, without the need for pre-processing and the addition of expensive modifiers, to produce WPCs with properties that satisfy the minimum requirements for interior cladding or ceiling material.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 499
Author(s):  
Duong Huu Hoang ◽  
Doreen Ebert ◽  
Robert Möckel ◽  
Martin Rudolph

The depletion of ore deposits, the increasing demand for raw materials, the need to process low-grade, complex and finely disseminated ores, and the reprocessing of tailings are challenges especially for froth flotation separation technologies. Even though they are capable of handling relatively fine grain sizes, the flotation separation of very fine and ultrafine particles faces many problems still. Further, the flotation of low-contrast semi-soluble salt-type minerals with very similar surface properties, many complex interactions between minerals, reagents and dissolved species often result in poor selectivity. This study investigates the flotation beneficiation of ultrafine magnesite rich in dolomite from desliming, currently reported to the tailings. The paper especially focuses on the impact of the depressant sodium hexametaphosphate (SHMP) on the following: (i) the froth properties using dynamic froth analysis (DFA), (ii) the separation between magnesite and dolomite/calcite, and (iii) its effect on the entrainment. As a depressant/dispersant, SHMP has a beneficial impact on the flotation separation between magnesite and dolomite. However, there is a trade-off between grade and recovery, and as well as the dewatering process which needs to be considered. When the SHMP increases from 200 g/t to 700 g/t, the magnesite grade increases from 67% to 77%, while recovery decreases massively, from 80% to 40%. The open circuit with four cleaning stages obtained a concentrate assaying 77.5% magnesite at a recovery of 45.5%. The dolomite content in the concentrate is about 20%, where 80% of dolomite was removed and importantly 98% of the quartz was removed, with only 0.3% of the quartz in the final concentrate. Furthermore, the application of 1-hydroxyethylene-1,1-diphosphonic acid (HEDP) as a more environmentally friendly and low-cost alternative to SHMP is presented and discussed. Using only 350 g/t of HEDP can achieve a similar grade (76.3%), like 700 g/t of SHMP (76.9%), while obtaining a 17% higher magnesite recovery as compared to 700 g/t of SHMP. Interestingly, the proportion of hydrophilic quartz minerals ending up in the concentrate is lower for HEDP, with only 1.9% quartz at a recovery of 21.5% compared to the 2.7% of quartz at a recovery of 24.9% when using SHMP. The paper contributes in general to understanding the complexity of the depressant responses in froth flotation.


2016 ◽  
Vol 723 ◽  
pp. 572-578
Author(s):  
Li Fu ◽  
Qi Chi Le ◽  
Xi Bo Wang ◽  
Xuan Liu ◽  
Wei Tao Jia

In recent years, the development and utilization of renewable generation have attracted more and more attention, and the grid puts forward higher requirements to the energy storage technology, especially for security, stability and reliability. The liquid metal battery (LMB) consists of two liquid metal electrodes and a molten salt electrolyte, which will be segregated into three liquid layers naturally. Being low-cost and long-life, it is regarded as the best choice for grid-level large-scale energy storage. This paper describes the main structure and working principle of the LMB, analyzes the advantages and disadvantages of the LMB when compared with the traditional batteries, and explores the feasibility and economy when it is used as a kind of large-scale energy storage applied in the power grid. The paper also makes a comprehensive comparison on the performance of several LMBs, and points out the LMB’s research and development in the future.


2020 ◽  
Vol 49 (6) ◽  
pp. 1776-1784 ◽  
Author(s):  
Zhengang Guo ◽  
Xiaofeng Wang ◽  
Yangqin Gao ◽  
Zhifeng Liu

The development and utilization of low-cost and efficient electrocatalysts for overall water splitting is of great significance for future energy supplies.


Author(s):  
Jian Song ◽  
Chun-wei Gu

Energy shortage and environmental deterioration are two crucial issues that the developing world has to face. In order to solve these problems, conversion of low grade energy is attracting broad attention. Among all of the existing technologies, Organic Rankine Cycle (ORC) has been proven to be one of the most effective methods for the utilization of low grade heat sources. Turbine is a key component in ORC system and it plays an important role in system performance. Traditional turbine expanders, the axial flow turbine and the radial inflow turbine are typically selected in large scale ORC systems. However, in small and micro scale systems, traditional turbine expanders are not suitable due to large flow loss and high rotation speed. In this case, Tesla turbine allows a low-cost and reliable design for the organic expander that could be an attractive option for small scale ORC systems. A 1-D model of Tesla turbine is presented in this paper, which mainly focuses on the flow characteristics and the momentum transfer. This study improves the 1-D model, taking the nozzle limit expansion ratio into consideration, which is related to the installation angle of the nozzle and the specific heat ratio of the working fluid. The improved model is used to analyze Tesla turbine performance and predict turbine efficiency. Thermodynamic analysis is conducted for a small scale ORC system. The simulation results reveal that the ORC system can generate a considerable net power output. Therefore, Tesla turbine can be regarded as a potential choice to be applied in small scale ORC systems.


1946 ◽  
Vol 26 (8) ◽  
pp. 621-627
Author(s):  
B D RICHARDS ◽  
O ELSDEN ◽  
J K HUNTER ◽  
D LLOYD ◽  
J G MACLELLAN

Author(s):  
Damian Gromek ◽  
Piotr Samczynski ◽  
Krzysztof Stasiak ◽  
Jakub Julczyk ◽  
Maciej Wielgo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document