Adsorption Research of Tetracycline from Water by HCl-Modified Zeolite

2012 ◽  
Vol 573-574 ◽  
pp. 43-47 ◽  
Author(s):  
Yan Li Zou ◽  
Hong Huang ◽  
Ming Chu ◽  
Jian Wei Lin ◽  
Da Qiang Yin ◽  
...  

The sorption performance of tetracycline (TC) on HCl-modified zeolite under different conditions was investigated. HCl-modified zeolite exhibited more than two times higher adsorption capacity than natural one. Adsorption kinetics and adsorption equilibrium isotherms were studied by conducting series of batch experiments. The kinetic analysis indicated that the pseudo-second-order kinetic model was well described the sorption equilibrium process of tetracycline onto natural and HCl-modified zeolites, and intra-particle diffusion was not the only rate-limiting in the sorption process. The results from sorption equilibrium studies showed that the Langmuir and Dubinin-Radushkevich (D-R) isotherm models were well fitted to experimental data, the value of E confirmed that the adsorption was controlled by physical combined with chemical adsorption mechanism. The sorption removal capacity is relatively higher at low pH. The adsorption removal rate of wastewater containing 0.1 mmol/L tetracycline was 95.5% when the dosage of treated zeolite was 0.05g.

2012 ◽  
Vol 512-515 ◽  
pp. 2355-2360 ◽  
Author(s):  
Hong Huang ◽  
Yan Li Zou ◽  
Ya Nan Li

The sorption performance of tetracycline on zeolite under different conditions was investigated in presence and absence of Cu(Ⅱ).The presence of Cu(Ⅱ) greatly increased the adsorption of tetracycline on zeolite. Adsorption kinetics and adsorption equilibrium isotherms were studied by conducting series of batch experiments. The kinetic analysis indicated that the pseudo-second-order kinetic model was well described the sorption equilibrium process of tetracycline onto zeolite in the presence and absence of Cu(Ⅱ), and intra-particle diffusion was not the only rate-limiting in the sorption process. The qmax value calculated from Langmuir model were 17.37 and 68.26 mg/g in the absence and the presence of Cu(Ⅱ). The value of E calculated from Dubinin-Radushkevich (D-R) model confirmed that the adsorption in the absence and presence of Cu(Ⅱ) were mainly controlled by physical combined with chemical adsorption mechanism. The tetracycline sorption amount decreased in the absence of Cu(Ⅱ) and increased in the presence of Cu(Ⅱ) as the pH increasing. The adsorption removal rate of wastewater containing 0.1 mmol/L tetracycline was 95.5% in the presence of Cu(Ⅱ) and 34.5% in the absence of Cu(Ⅱ) when the dosage of zeolite was 0.05g.


2019 ◽  
Vol 2 (3) ◽  
pp. 823-830
Author(s):  
Fatih Deniz

In this study, the sawdust waste biomass was used as an eco-friendly biosorbent material for the bioremediation of manganese pollution in aqueous environment. The effects of various environmental variables such as pH, biosorbent amount, metal concentration and contact time on the manganese biosorption were studied in batch operating conditions. The kinetic and equilibrium studies were performed to elucidate the biosorption behavior of biosorbent material. The biosorption capacity of biosorbent was strongly influenced by the operating parameters. The experimental data were more successfully modeled by the pseudo-second-order kinetic model and Langmuir isotherm model compared to other models applied in the study. The maximum manganese removal capacity of biosorbent was found to be 25.655 mg g-1. These findings showed that the sawdust waste biomass can be used as an eco-friendly biosorbent material for the bioremediation of manganese pollution in aqueous environment.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1922
Author(s):  
Sepehr Azizkhani ◽  
Ebrahim Mahmoudi ◽  
Norhafizah Abdullah ◽  
Mohd Halim Shah Ismail ◽  
Abdul Wahab Mohammad ◽  
...  

Heavy metal ions have a toxic and negative influences on the environment and human health even at low concentrations and need to be removed from wastewater. Chitosan and graphene oxide are suitable nano plate adsorbents with high adsorption potential because of their π-π interaction, and they are available functional groups that interact with other elements. In this study, graphene oxide was coated with silica to enhance the hydrophilicity of the adsorbent. Subsequently, the adsorbent was functionalised by various amounts of chitosan to improve the Pb(II) removal. The adsorbent was analysed using transmission electron microscopy (TEM), Raman, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and mapping analysis techniques. An investigation of the influences of the initial concentration of Pb(II), pH and contact time were included to obtain the optimum amount of adsorption. The range of the initial Pb(II) concentration studied was from 10 to 120 mg/L. The pH factor ranged from 3 to 8 with contact time from 0 to 140 min. Freundlich, Temkin and Langmuir isotherm models were fit to the results, and a pseudo-second-order kinetic model was found to provide a good fit as well. The maximum Pb(II) removal capacity achieved was 256.41 (+/− 4%) mg/g based on Langmuir isotherms.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
A. O. Adebayo ◽  
O. O. Ajayi

Biosorption of Pb(II) ions from aqueous solution by cow hooves (CHs) was investigated as a function of initial pH, contact time, and biosorbent dosage through batch studies. Equilibrium experiments were performed at three different temperatures (298, 308, and 318 K) using initial Pb2+ concentration ranging from 15 to 100 mgg−1. This study revealed that maximum uptake (96.2% removal) of Pb2+ took place within 30 minutes of agitation, and the process was brought to equilibrium within 60 minutes of equilibration. The equilibrium data were modelled using Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models. The Langmuir isotherm model fitted the data best at all temperatures considered. The Lagergren second-order kinetic model fitted the biosorption process better than the first-order model. The negative values obtained for both Gibb’s free energy change and enthalpy change are an indication of the spontaneous and exothermic nature of the sorption of Pb2+ onto CH. A study of the FTIR spectral obtained before and after Pb2+ sorption showed that carbonyl, hydroxyl, amino, and carboxyl groups were involved in the sorption process.


2015 ◽  
Vol 72 (11) ◽  
pp. 1931-1939 ◽  
Author(s):  
Quan Tao ◽  
Mu Hu ◽  
Xiaofang Ma ◽  
Mingli Xiang ◽  
Tian C. Zhang ◽  
...  

In this study, surfactant (hexadecyltrimethylammonium, HDTMA) modified zeolite (clinoptilolite) (SMZ) was used for simultaneous removal of ammonium and nitrate in wastewater, and the sorption properties of SMZ were determined. Results showed that natural clinoptilolite had good affinity for ammonium, but low sorption ability for nitrate, and the ammonium sorption process was well described by the pseudo-second order kinetic model. The SMZ had a significant enhancement on nitrate sorption and could simultaneously remove ammonium and nitrate at specific conditions, with removal efficiency up to 93.6% and 81.8%, respectively. The sorption process fitted well with the Langmuir isotherm. Orthogonal experiments showed that ammonium concentration was the most important factor for ammonium sorption on SMZ. However, surfactant loading was the major factor for nitrate sorption. Meanwhile, phosphate did not interfere with nitrate removal. Semi-empirical quantum mechanics molecular simulation indicated that electrostatic attraction existed between HDTMA and nitrate. Results of this study demonstrated that SMZs may have great potential for removing cations and anions simultaneously in the aquatic environment.


2013 ◽  
Vol 807-809 ◽  
pp. 521-525
Author(s):  
Hui Juan Wang ◽  
Xiao Li Wang ◽  
Li Xiang Wang

The alkali heat modification used in coal gangue. And the adsorption effect of MB on original gangue and modified gangue were observed. The results were showed that removal rate of MB was 96.87% and 45.45% by modified gangue and original gangue under the conditions of MB initial concentration 50mg·L-1. The adsorption mechanism was discussed based on Freundlich isotherm model and Langmuir isotherm model. It was proved that MB was easy to be adsorbed by modified coal gangue and the adsorption was belong to monolayer adsorption.The pseudo-second-order kinetic model was best accord to adsorption. And the rate of absorption was control by intra-particle diffusion.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


2017 ◽  
Vol 75 (6) ◽  
pp. 1500-1511 ◽  
Author(s):  
Shengjiong Yang ◽  
Pengkang Jin ◽  
Xiaochang C. Wang ◽  
Qionghua Zhang ◽  
Xiaotian Chen

In this study, a granular material (GM) developed from building waste was used for phosphate removal from phosphorus-containing wastewater. Batch experiments were executed to investigate the phosphate removal capacity of this material. The mechanism of removal proved to be a chemical precipitation process. The characteristics of the material and resulting precipitates, the kinetics of the precipitation and Ca2+ liberation processes, and the effects of dosage and pH were investigated. The phosphate precipitation and Ca2+ liberation processes were both well described by a pseudo-second-order kinetic model. A maximum precipitation capacity of 0.51 ± 0.06 mg g−1 and a liberation capacity of 6.79 ± 0.77 mg g−1 were measured under the experimental conditions. The processes reached equilibrium in 60 min. The initial solution pH strongly affected phosphate removal under extreme conditions (pH <4 and pH >10). The precipitates comprised hydroxyapatite and brushite. This novel GM can be considered a promising material for phosphate removal from wastewater.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Prasanna Kumarathilaka ◽  
Vimukthi Jayaweera ◽  
Hasintha Wijesekara ◽  
I. R. M. Kottegoda ◽  
S. R. D. Rosa ◽  
...  

Embedding nanoparticles into an inert material like graphene is a viable option since hybrid materials are more capable than those based on pure nanoparticulates for the removal of toxic pollutants. This study reports for the first time on Cr(VI) removal capacity of novel starch stabilized nanozero valent iron-graphene composite (NZVI-Gn) under different pHs, contact time, and initial concentrations. Starch coated NZVI-Gn composite was developed through borohydrate reduction method. The structure and surface of the composite were characterized by scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and point of zero charge (pHpzc). The surface area and pHpzc of NZVI-Gn composite were reported as 525 m2 g−1 and 8.5, respectively. Highest Cr(VI) removal was achieved at pH 3, whereas 67.3% was removed within first few minutes and reached its equilibrium within 20 min obeying pseudo-second-order kinetic model, suggesting chemisorption as the rate limiting process. The partitioning of Cr(VI) at equilibrium is perfectly matched with Langmuir isotherm and maximum adsorption capacity of the NZVI-Gn composite is 143.28 mg g−1. Overall, these findings indicated that NZVI-Gn composite could be utilized as an efficient and magnetically separable adsorbent for removal of Cr(VI).


2018 ◽  
Vol 7 (3) ◽  
pp. 966
Author(s):  
Kartik Kulkarni ◽  
Varsha Sudheer ◽  
C R Girish

The potential of agricultural waste cashew nut shells as an adsorbent for removing phenol from wastewater is presented in this paper. The adsorbent was treated with 3M sulphuric acid in order to improve the properties. The experimental parameters such as adsorbent dosage, concentration and temperature were optimized with response surface methodology (RSM). The isotherm data were tested with different isotherm models and it obeyed Freundlich Isotherm showing the multilayer adsorption. The kinetic data satisfied pseudo-first order kinetic model. The maximum adsorption capacity was calculated to be 35.08 mg/g proving the capability of cashew nut shells for removing phenol from wastewater.  


Sign in / Sign up

Export Citation Format

Share Document