Projecting Spatial Patterns of Extreme Heat Hazard to Human Health under SRES B2 Scenario

2012 ◽  
Vol 573-574 ◽  
pp. 442-445
Author(s):  
Shan Feng He ◽  
Quan Sheng Ge

Higher temperature will have serious effects on human health in the context of global warming. Projection of changes in extreme heat hazard is critical to assess the potential impacts of climate change on human health. Using PRECIS simulations, two indices – hot days and heat-wave days – were selected to project the spatial patterns of extreme heat hazard for the baseline period (1961–1990) and future (2011–2040) over China under SRES B2 scenario. The results showed the annual hot days would increase from 10.2 days to 17.3 days, and the annual heat-wave days from 11.5 days to 22.6 days. The extreme heat hazard in most areas of the country would become higher to some extent except for Tibetan Plateau, and the area percentage of extreme heat hazard grade 5 would extend from 2.3% to 13.7%.

Circulation ◽  
2017 ◽  
Vol 135 (suppl_1) ◽  
Author(s):  
Yi Wang

Background: The association between heat and hospital admissions is well studied, but in Indiana where the regulatory agencies cites lack of evidence for global climate change, local evidence of such an association is critical for Indiana to mitigate the impact of increasing heat. Methods: Using a distributed-lag non-linear model, we studied the effects of moderate (31.7 °C or 90 th percentile of daily mean apparent temperature (AT)), severe (33.5 °C or 95 th percentile of daily mean apparent temperature (AT)) and extreme (36.4 °C or 99 th percentile of AT) heat on hospital admissions (June-August 2007-2012) for cardiovascular (myocardial infarction, myocardial infarction, heart failure) and heat-related diseases in Indianapolis, Indiana located in Marion County. We also examined the added effects of moderate heat waves (AT above the 90 th percentile lasting 2-6 days), severe heat waves (AT above the 95 th percentile lasting 2-6 days) and extreme heat waves (AT above the 99 th percentile lasting 2-6 days). In sensitivity analysis, we tested robustness of our results to 1) different temperature and lag structures and 2) temperature metrics (daily min, max and diurnal temperature range). Results: The relative risks of moderate heat, relative to 29.2°C (75 th percentile of AT), on admissions for cardiovascular disease (CVD), myocardial infarction (MI), heart failure (HF), and heat-related diseases (HD) were 0.98 (0.67, 1.44), 6.28 (1.48, 26.6), 1.38 (0.81, 2.36) and 1.73 (0.58, 5.11). The relative risk of severe heat on admissions for CVD, MI, HF, and HD were 0.93 (0.60, 1.43), 4.46 (0.85, 23.4), 1.30 (0.72, 2.34) and 2.14 (0.43, 10.7). The relative risk of extreme heat were 0.79 (0.26, 2.39), 0.11 (0.087, 1.32), 0.68 (0.18, 2.61), and 0.32 (0.005, 19.5). We also observed statistically significant added effects of moderate heat waves lasting 4 or 6 days on hospital admission for MI and HD and extreme heat waves lasting 4 days on hospital admissions for HD. Results were strengthened for people older than 65. Conclusions: Moderate heat wave lasting 4-6 days were associated with increased hospital admissions for MI and HD diseases and extreme heat wave lasting 4 days were associated with increased admissions for HD.


2021 ◽  
Author(s):  
Natalia Korhonen ◽  
Otto Hyvärinen ◽  
Matti Kämäräinen ◽  
Kirsti Jylhä

<p>Severe heatwaves have harmful impacts on ecosystems and society. Early warning of heat waves help with decreasing their harmful impact. Previous research shows that the Extended Range Forecasts (ERF) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have over Europe a somewhat higher reforecast skill for extreme hot summer temperatures than for long-term mean temperatures. Also it has been shown that the reforecast skill of the ERFs of the ECMWF was strongly increased by the most severe heat waves (the European heatwave 2003 and the Russian heatwave 2010).</p><p>Our aim is to be able to estimate the skill of a heat wave forecast at the time the forecast is given. For that we investigated the spatial and temporal reforecast skill of the ERFs of the ECMWF to forecast hot days (here defined as a day on which the 5 days running mean surface temperature is above its summer 90<sup>th</sup> percentile) in the continental Europe in summers 2000-2019. We used the ECMWF 2-meter temperature reforecasts and verified them against the ERA5 reanalysis. The skill of the hot day reforecasts was estimated by the symmetric extremal dependence index (SEDI) which considers both hit rates and false alarm rates of the hot day forecasts. Further, we investigated the skill of the heatwave reforecasts based on at which time steps of the forecast the hot days were forecasted. We found that on the mesoscale (horizontal scale of ~500 km) the ERFs of the ECMWF were most skillful in predicting the life cycle of a heat wave (lasting up to 25 days) about a week before its start and during its course. That is, on the mesoscale those reforecasts, in which hot day(s) were forecasted to occur during the first 7…11 days, were more skillful on lead times up to 25 days than the rest of the heat wave forecasts. This finding is valuable information, e.g., in the energy and health sectors while preparing for a coming heat wave.</p><p>The work presented here is part of the research project HEATCLIM (Heat and health in the changing climate) funded by the Academy of Finland.</p>


2021 ◽  

Extreme heat events (EHEs) are periods of high temperatures and humidity that are considered to be unusual for a specific geographic location. For example, in 1995 an extended heat wave in Chicago, Illinois, in the United States was blamed for the deaths of 550 citizens. Most of the dead were elderly, poor individuals who may not have realized that heat could kill, or who had no means of mitigating the rising temperatures in their homes or any way to escape to a cooler environment. In 2003, Europe was subjected to an EHE that is estimated to have resulted in the deaths of 70,000, with 15,000 of those deaths in Paris, France. “Extreme heat” is a relative term. Individuals adapt to their local climate, so it is difficult to use an absolute number to describe the conditions meteorologists consider a relative change from past conditions. The Centers for Disease Control and Prevention (CDC) defines extreme heat as “summertime temperatures that are substantially hotter and/or more humid than average for location at that time of year.” According to the Public Health Institute’s Center for Climate Change, the state of California defines extreme heat days as those days above the 98th percentile of maximum temperatures based on 1961–1990 data for a specific location. Crucial to understanding extreme heat events is the collection of data about temperature and humidity. The US Global Change Research Program provides heat wave data spanning 1961 to 2018. The site links to a variety of programs related to global climate modeling. The National Resources Defense Council is a nongovernmental organization that has excellent maps which show change over time in the frequency of extreme heat events that overlay the human impact of these events. The National Centers for Environmental Information provides graphic data of current weather conditions along with lists of significant climate anomalies. The site has links to weather records and tools. All of these sites rely on the National Oceanic and Atmospheric Administration for their data. There are equivalent agencies all over the world. The World Meteorological Organization, part of the United Nations, is also a valuable resource for data.


2020 ◽  
Vol 12 (7) ◽  
pp. 2750
Author(s):  
Xiaojun Huang ◽  
Yanyu Li ◽  
Yuhui Guo ◽  
Dianyuan Zheng ◽  
Mingyue Qi

Many cities are experiencing persistent risk in China due to frequent extreme weather events. Some extreme weather events, such as extreme heat hazard, have seriously threatened human health and socio-economic development in cities. There is an urgent need to measure the degree of extreme heat risk and identify cites with the highest levels of extreme heat risk. In this study, we presented a risk assessment framework of extreme heat and considered risk as a combination of hazard, exposure, and vulnerability. Based on these three dimensions, we selected relevant variables from historical meteorological data (1960–2016) and socioeconomic statistics in 2016, establishing an indicator system of extreme heat risk evaluation. Finally, we developed an extreme heat risk index to quantify the levels of extreme heat risk of 296 prefecture-level cities in China and revealed the spatial pattern of extreme heat risk in China in 2016 and their dominant factors. The results show that (1) cities with high levels of extreme heat hazard are mainly located in the south of China, especially in the southeast of China; (2) the spatial distribution of the extreme heat risk index shows obvious agglomeration characteristics; (3) the spatial distribution of the extreme heat risk is still mostly controlled by natural geographical conditions such as climate and topography; (4) among the four types of hazard-dominated, exposure-dominated, vulnerability-dominated, and low risk cities, the number of vulnerability-dominated cities is the largest. The results of this study can provide support for the risk management of extreme heat disasters and the formation of targeted countermeasures in China.


Author(s):  
Günay Can ◽  
Ümit Şahin ◽  
Uğurcan Sayılı ◽  
Marjolaine Dubé ◽  
Beril Kara ◽  
...  

Heat waves are one of the most common direct impacts of anthropogenic climate change and excess mortality their most apparent impact. While Turkey has experienced an increase in heat wave episodes between 1971 and 2016, no epidemiological studies have examined their potential impacts on public health so far. In this study excess mortality in Istanbul attributable to extreme heat wave episodes between 2013 and 2017 is presented. Total excess deaths were calculated using mortality rates across different categories, including age, sex, and cause of death. The analysis shows that three extreme heat waves in the summer months of 2015, 2016, and 2017, which covered 14 days in total, significantly increased the mortality rate and caused 419 excess deaths in 23 days of exposure. As climate simulations show that Turkey is one of the most vulnerable countries in the Europe region to the increased intensity of heat waves until the end of the 21st century, further studies about increased mortality and morbidity risks due to heat waves in Istanbul and other cities, as well as intervention studies, are necessary.


2013 ◽  
Vol 723 ◽  
pp. 617-622
Author(s):  
Er Hu Yan ◽  
Fu Pu Li ◽  
Rong Ma ◽  
Fei Chen

Climate change is one of the most key global topics well-known in international community. Over the past decades years, the change climate and its impact on asphalt pavement in China is very obvious. Many expressways of asphalt pavement come forth severe rutting failure during only a few days of extensive, long-lasting, extreme heat wave in summer, which resulting in the change of asphalt cement specification and the selection practice of asphalt cement. So it is necessary to review climate change and its impact in the past, and forecast the probable situation in the future. The paper focuses specifically on the issue of asphalt binder selection under changing climatic conditions.


Author(s):  
Hojjatollah Yazdanpanah ◽  
Josef Eitzinger ◽  
Marina Baldi

Purpose The purpose of this paper is to assess the spatial and temporal variations of extreme hot days (H*) and heat wave frequencies across Iran. Design/methodology/approach The authors used daily maximum temperature (Tmax) data of 27 synoptic stations in Iran. These data were standardized using the mean and the standard deviation of each day of the year. An extreme hot day was defined when the Z score of daily maximum temperature of that day was equal or more than a given threshold fixed at 1.7, while a heat wave event was considered to occur when the Z score exceeds the threshold for at least three continuous days. According to these criteria, the annual frequency of extreme hot days and the number of heat waves were determined for all stations. Findings The trend analysis of H* shows a positive trend during the past two decades in Iran, with the maximum number of H* (110 cases) observed in 2010. A significant trend of the number of heat waves per year was also detected during 1991-2013 in all the stations. Overall, results indicate that Iran has experienced heat waves in recent years more often than its long-term average. There will be more frequent and intense hot days and heat waves across Iran until 2050, due to estimated increase of mean air temperature between 0.5-1.1 and 0.8-1.6 degree centigrade for Rcp2.6 and Rcp8.8 scenarios, respectively. Originality/value The trend analysis of hot days and heat wave frequencies is a particularly original aspect of this paper. It is very important for policy- and decision-makers especially in agriculture and health sectors of Iran to make some adaptation strategies for future frequent and intense hot days over Iran.


Sign in / Sign up

Export Citation Format

Share Document