Experimental and Numerical Simulation of Hollow Structure under Compression Loading

2012 ◽  
Vol 576 ◽  
pp. 651-654 ◽  
Author(s):  
Kassim A. Abdullah ◽  
Jaffar S. Mohamed Ali ◽  
Yulfian Aminanda

Buckling and crushing behaviour of hollow structure was studied through experiments and numerical simulation. The experimental material was a thin aluminium square tube (38 x 38, 1.2 mm thick). Quasi-static crushing load was applied using a Universal Testing Machine, Shimadzu Autograph (AG-X) series which uses TRAPEZIUMX software for control and data logging. Finite element simulation of the crushing test was done using LS-DYNA software. Results of the two analyses were compared and found in good agreement. The study provides an insight on ways to increasing energy absorption of light weight aluminium tubes. The simulation procedure can be used for further investigation of aluminium tubes of different cross section areas and geometries.

2013 ◽  
Vol 554-557 ◽  
pp. 630-637 ◽  
Author(s):  
Martin Grüner ◽  
Marion Merklein

Aluminium alloys show a great potential for lightweight constructions due to their high strength and low density but the production of this material is very energy consuming. Also the recycling of aluminium alloys, e.g. chips from the milling process, shows different challenges. Beside contamination by cooling lubricant and oxidation of the surface of the chips the melting and rolling process for new semi finish products needs a high amount of energy. TEKKAYA shows a new approach for recycling of aluminium alloy chips by an extrusion process at elevated temperatures producing different kinds of profiles. A new idea is the production of components directly out of chips using severe plastic deformation for joining of the chips similar to the accumulative roll bonding process in sheet metal forming. In a first approach aluminium alloy chips out of a milling process were uniaxial compressed with different loads inside an axisymmetric tool installed in a universal testing machine. The compressed chip disks subsequently were tested with two experiments to gain information on their stability. First experiment is a disk compression test with the disk standing on its cylindrical surface, giving information on the stability perpendicular to the compression direction. Second experiment is a stacked disk compression test with three disks to investigate the stability parallel to compression direction. During all three tests force and displacement values are recorded by the universal testing machine. These data are also processed to calculate or identify input parameters for the numerical investigations. For numerical simulation ABAQUS in conjunction with the Drucker-Prager-Cap material model, which is often used for sintering processes, seems to be a good choice. By numerical simulation of the experiments and comparison with the experiments input parameters for the material model can be identified showing good accordance. This material model will be used in future numerical investigations of an extrusion process to identify tool geometries leading to high strains inside the material and by this to an increased stability of the parts.


2019 ◽  
Vol 11 (3) ◽  
pp. 147-156
Author(s):  
Prabhat SINGH ◽  
Bhagel SINGH

This paper presents an experimental study on the development of biocomposite material by using sawdust (SD) and rice husk (RH). The use of composite in the present production has increased dramatically since the 1970’s. Traditional material like aluminum, steel, iron and copper etc. may be easily replaced by using this classical biocomposites. The tensile test, hardness and tear resistance test were conducted in a Universal testing machine as per ASTM D638, ASTM D2240 and ASTM D1004 standard, respectively. Although commercial industries have increasingly been concerned with the low cost, light weight and eco-friendly material, the biocomposite material has also a great potential for reduced production cost and low maintenance which have proven to be a main factor in a push towards recycled biocomposites. In this paper we have fabricated a biocomposite model from materials like sawdust, rice husk. The main reason to use biocomposites is that they are more economical and have high strength to weight ratio compared to glass fibers. Hence fabricated material can be used for various applications.


2014 ◽  
Vol 1027 ◽  
pp. 150-155 ◽  
Author(s):  
Xian Jing Shi ◽  
Qiu Sheng Yan ◽  
Jia Bin Lu ◽  
Jun Zeng

Based on the principle of disc slitting process, a 3D model of the disc slitting process for galvanized sheet was established by using DEFORM-3D software, and the deformation, fracture and material effective stress of galvanized sheet were analyzed. The surface morphology of numerical simulation is in good agreement with the actual result. The curve of shearing force was obtained and well matched with the change rule of slitting process. Compared with the theoretical calculation result, the simulation result is reliable and can provide a reference for the calculation of shearing force.


2006 ◽  
Vol 45 ◽  
pp. 1551-1557
Author(s):  
Zbigniew Jurasz ◽  
Janusz Juraszek

The results of residual stresses in biocompatible cast Ni-Cr alloys-ceramics joints with an intermediate layer with thickness of about 10μm are discussed. To the experiment were used specimens with dimensions of 45×3×10 mm and 45×4×10 mm made of Cr-Ni alloys-ceramics joint both with and without of application of an intermediate layer. The examinations were carried out by means of metallographical microscope, testing machine and X-ray diffractometer. The measurement of residual macrostresses was carried out by using sin2ψ method. The obtained experimentally values of residual macrostresses are in good agreement with results of numerical simulation performed by means of FEM ANSYS package. The researches have been shown that application of an intermediate ceramics layer influence on increase of strength properties of Ni-Cr alloys-ceramics joints.


1986 ◽  
Vol 14 (2) ◽  
pp. 125-136 ◽  
Author(s):  
Y. Nakajima ◽  
J. Padovan

Abstract This paper extends the finite element simulation scheme to handle the problem of tires undergoing sliding (skidding) impact into obstructions. Since the inertial characteristics are handled by the algorithm developed, the full range of operating environments can be accommodated. This includes the treatment of impacts with holes and bumps of arbitrary geometry.


2013 ◽  
Vol 1 (1) ◽  
pp. 42-25
Author(s):  
Nabil N. Swadi

This paper is concerned with the study of the kinematic and kinetic analysis of a slider crank linkage using D'Alembert's principle. The links of the considered mechanism are assumed to be rigid. The analytical solution to observe the motion (displacement, velocity, and acceleration), reactions at each joint, torque required to drive the mechanism and the shaking force have been computed by a computer program written in MATLAB language over one complete revolution of the crank shaft. The results are compared with a finite element simulation carried out by using ANSYS Workbench software and are found to be in good agreement. A graphical method (relative velocity and acceleration method) has been also applied for two phases of the crank shaft (q2 = 10° and 130°). The results obtained from this method (graphical) are compared with those obtained from analytical and numerical method and are found very acceptable. To make the analysis linear the friction force on the joints and sliding interface are neglected. All results, in this work, are obtained when the crank shaft turns at a uniform angular velocity (w2 = 188.5 rad/s) and time dependent gas pressure force on the slider crown.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 201-207
Author(s):  
H. Nagaoka ◽  
T. Nakano ◽  
D. Akimoto

The objective of this research is to investigate mass transfer mechanism in biofilms under oscillatory flow conditions. Numerical simulation of turbulence near a biofilm was conducted using the low Reynold’s number k-ɛ turbulence model. Substrate transfer in biofilms under oscillatory flow conditions was assumed to be carried out by turbulent diffusion caused by fluid movement and substrate concentration profile in biofilm was calculated. An experiment was carried out to measure velocity profile near a biofilm under oscillatory flow conditions and the influence of the turbulence on substrate uptake rate by the biofilm was also measured. Measured turbulence was in good agreement with the calculated one and the influence of the turbulence on the substrate uptake rate was well explained by the simulation.


1988 ◽  
Vol 20 (6-7) ◽  
pp. 263-270 ◽  
Author(s):  
K. Otsubo ◽  
K. Muraoka

The dispersion and resuspension of sediments in Takahamairi Bay basin of Lake Kasumigaura were studied by means of field research and numerical simulation. The field data on wind direction and velocity, lake current, water wave, and turbidity were shown. Based on these results, we discuss how precipitated sediments were resuspended in this shallow lake. To predict the turbidity and the depth of bed erosion, a simulation model was established for this lake. The calculated turbidity showed good agreement with the field data. According to the simulated results, the turbidity reaches 200 ppm, and the bed is eroded several millimeters deep when the wind velocity exceeds 12 m/s in the lake.


2014 ◽  
Vol 875-877 ◽  
pp. 534-541 ◽  
Author(s):  
Chawalit Thinvongpituk ◽  
Nirut Onsalung

In this paper, the experimental investigation of polyurethane (PU) foam-filled into circular aluminum tubes subjected to axial crushing was presented. The purpose of this study is to improve the energy absorption of aluminium tube under axial quasi-static load. The aluminium tube was made from the AA6063-T5 aluminium alloy tubes. Each tube was filled with polyurethane foam. The density of foam was varied from 100, 150 and 200 kg/mP3P including with empty tube. The range of diameter/thickness (D/t) ratio of tube was varied from 15-55. The specimen were tested by quasi-static axial load with crush speed of 50 mm/min using the 2,000 kN universal testing machine. The load-displacement curves while testing were recorded for calculation. The mode of collapse of each specimen was analyzed concerning on foam density and the influence of D/t ratio. The results revealed that the tube with foam-filled provided significantly increment of the energy absorption than that of the empty tube. While the density of foam and D/t ratios increase, the tendency of collapse mode is transformed from asymmetric mode to concertina mode.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 268
Author(s):  
Olga V. Soloveva ◽  
Sergei A. Solovev ◽  
Ruzil R. Yafizov

In this work, a study was carried out to compare the filtering and hydrodynamic properties of granular filters with solid spherical granules and spherical granules with modifications in the form of micropores. We used the discrete element method (DEM) to construct the geometry of the filters. Models of granular filters with spherical granules with diameters of 3, 4, and 5 mm, and with porosity values of 0.439, 0.466, and 0.477, respectively, were created. The results of the numerical simulation are in good agreement with the experimental data of other authors. We created models of granular filters containing micropores with different porosity values (0.158–0.366) in order to study the micropores’ effect on the aerosol motion. The study showed that micropores contribute to a decrease in hydrodynamic resistance and an increase in particle deposition efficiency. There is also a maximum limiting value of the granule microporosity for a given aerosol particle diameter when a further increase in microporosity leads to a decrease in the deposition efficiency.


Sign in / Sign up

Export Citation Format

Share Document