Experimental Investigations on Magnetic Field Assisted Abrasive Micro Finishing of Austenitic Stainless Steel 304L

2012 ◽  
Vol 584 ◽  
pp. 192-196
Author(s):  
T.C. Kanish ◽  
P. Kuppan ◽  
S. Narayanan

This paper presents the experimental investigations on magnetic field assisted abrasive finishing of SS304L flat work material. The experiments are designed using Taguchi design of experiments method. The results indicate that process parameters such as voltage and machining gap are significant on improvement of surface finish (∆Ra). The surface roughness value as low as 0.09 µm is achieved at optimum conditions. The surface topography of the work material is analyzed by means of the surface roughness profile, optical and atomic force micrographs.

2018 ◽  
Vol 1 (1) ◽  
pp. 62-75 ◽  
Author(s):  
Rasmi Ranjan Behera ◽  
Mamilla Ravi Sankar ◽  
Prahlad Kumar Baruah ◽  
Ashwini Kumar Sharma ◽  
Alika Khare

The demand for miniaturized components is increasing day by day as their application varies from industry to industry such as biomedical, micro-electro-mechanical system and aerospace. In the present research work, high-quality micro-channels are fabricated on 304 stainless steel by laser beam micromachining process with nanosecond Nd:YAG laser. The laser pulse energy (LPE), scanning speed (SS) and scanning pass number (SP No.) are used as the process parameters, whereas the depth and width of the kerf as well as the surface roughness are used to characterize the micro-channels. It is found that the kerf depth, width and surface roughness decrease with increase in the SS. The kerf depth sharply increases with increase in the SP No. The kerf width is minimum at 30 mJ LPE, 400 µm s‒1 SS and 10 SP No. The minimum surface roughness is observed at 30 mJ LPE, 500 µm s‒1 SS and 10 SP No. The oxygen content is found to gradually decrease with the distance from the centre of the micro-channel. Based on the experimental results, optimized input parameters can be offered to control the micro-channel dimensions and improve their surface finish effectively on stainless steel.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Mehrdad Vahdati ◽  
SeyedAlireza Rasouli

The attempts of researchers in industries to obtain accurate and high quality surfaces led to the invention of new methods of finishing. Magnetic abrasive finishing (MAF) is a relatively new type of finishing in which the magnetic field is used to control the abrasive tools. Applications such as the surface of molds are ones of the parts which require very high surface smoothness. Usually this type of parts has freeform surface. In this study, the effect of magnetic abrasive process parameters on freeform surfaces of parts made of aluminum is examined. This method is obtained through combination of magnetic abrasive process and Control Numerical Computer (CNC). The use of simple hemisphere for installation on the flat area of the magnets as well as magnets’ spark in curve form is a measure done during testing the experiments. The design of experiments is based on response surface methodology. The gap, the rotational speed of the spindle, and the feed rate are found influential and regression equations governing the process are also determined. The impact of intensity of the magnetic field is obtained using the finite element software of Maxwell. Results show that in concave areas of the surface, generally speaking, the surface roughness decreases to 0.2 μm from its initial 1.3 μm roughness. However, in some points the lowest surface roughness of 0.08 μm was measured.


Author(s):  
Raul E. Riveros ◽  
Jared N. Hann ◽  
Curtis R. Taylor ◽  
Hitomi Yamaguchi

A magnetic field-assisted finishing (MAF) process has been developed to reduce the sidewall surface roughness of the 5–20 μm wide curvilinear pores of microelectromechanical systems micropore X-ray optics to <1 nm Rq. Although the feasibility of this process has been demonstrated on these optics, a clear understanding of the MAF process' material removal mechanisms has not been attained. In an attempt to discover these mechanisms, the MAF process is applied to a flat workpiece, allowing for direct observation and tracking of changes to distinctive surface features before and after MAF. Atomic force microscopy, field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy are used to analyze the surface morphology and composition with respect to finishing time. These observations suggest that the MAF process modified the surface, reducing surface roughness (from 0.8 nm to 0.6 nm Rz on silicon) by removing relatively low-wavelength surface features. Moreover, the MAF process appears to modify the surface mechanically.


2019 ◽  
Vol 31 (2) ◽  
pp. 91
Author(s):  
Chrisni Oktavia Jusup ◽  
Eky Setiawan Soeria Soemantri ◽  
Endah Mardiati ◽  
Ida Ayu Evangelina

Introduction: The base surface roughness of slot bracket can affect friction in tooth movement. There are ISO-certified and non-ISO-certified stainless steel brackets on the market. Thus orthodontists must be careful in choosing the right bracket. This study was aimed to evaluate the differences of the surface roughness of ISO-certified and non-ISO-certified Roth 0.022 inch stainless steel bracket with the parameter of S a (average roughness). Methods: This research was a laboratory observational. Samples were taken randomly as many as 32 brackets divided into two groups, each consisted of two bracket brands. Surface roughness measurements were performed using an atomic force microscope (AFM), then the data were analysed by ANOVA test (p &lt; 0.05) and Post-Hoc analysis. Results: The ISO-certified bracket has an S a value smaller than the non-ISO-certified bracket. There was a significant difference in the surface roughness of the ISO-certified and non-ISO-certified slot bracket base (p &lt; 0.05). Conclusion: The ISO-certified bracket has a smoother base surface than the non-ISO-certified bracket base.Keywords: Surface roughness, stainless steel slot bracket, atomic force microscope


2005 ◽  
Vol 04 (02) ◽  
pp. 131-150 ◽  
Author(s):  
S. C. JAYSWAL ◽  
V. K. JAIN ◽  
P. M. DIXIT

Magnetic Abrasive Finishing (MAF) is one of the non-conventional finishing processes, which produces a high level of surface quality and is primarily controlled by magnetic field. In MAF, workpiece is kept between the two poles (N and S) of a magnet. The working gap between the workpiece and the magnet is filled with magnetic abrasive particles. A magnetic abrasive flexible brush (MAFB) is formed, acting as a multipoint cutting tool, due to the effect of magnetic field in the working gap. This paper deals with theoretical investigations of the plane MAF process to know the effect of the process parameters on the surface quality produced. The magnetic field is simulated using finite element model of the process. The magnetic field is also measured experimentally to validate the theoretical results. A series of numerical experiments are performed using the finite element and surface roughness models of the process to study the effect of flux density, height of working gap, size of magnetic abrasive particles and slots (size and location) in the magnetic pole on the surface quality. Based on the results, it is concluded that surface roughness value (R max ) of the workpiece decreases with increase in flux density and size of magnetic abrasive particles. Surface roughness value (R max ) decreases with decrease in working gap. R max value also decreases when the magnet has a slot as compared to the magnet having no slot. Present study would help in understanding the effect of the various parameters on surface roughness value without doing a number of real-life experiments.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 312 ◽  
Author(s):  
Lida Heng ◽  
Cheng Yin ◽  
Seok Han ◽  
Jun Song ◽  
Sang Mun

In this paper, we propose a new ultra-high-precision magnetic abrasive finishing method for wire material which is considered to be difficult with the existing finishing process. The processing method uses a rotating magnetic field system with unbonded magnetic abrasive type. It is believed that this process can efficiently perform the ultra-high-precision finishing for producing a smooth surface finish and removing a diameter of wire material. For such a processing improvement, the following parameters are considered; rotational speed of rotating magnetic field, vibration frequency of wire material, and unbonded magnetic abrasive grain size. In order to evaluate the performance of the new finishing process for the wire material, the American Iron and Steel Institute (AISI) 1085 steel wire was used as the wire workpiece. The experimental results showed that the original surface roughness of AISI 1085 steel wire was enhanced from 0.25 µm to 0.02 µm for 60 s at 800 rpm of rotational speed. Also, the performance of the removed diameter was excellent. As the result, a new ultra-high-precision magnetic abrasive finishing using a rotating magnetic field with unbonded magnetic abrasive type could be successfully adopted for improving the surface roughness and removing the diameter of AISI 1085 steel wire material.


2019 ◽  
Vol 30 ◽  
pp. 276-283
Author(s):  
Kanish T C ◽  
Narayanan S ◽  
Kuppan P ◽  
Denis Ashok S

2004 ◽  
Vol 127 (3) ◽  
pp. 605-611 ◽  
Author(s):  
Hitomi Yamaguchi ◽  
Takeo Shinmura ◽  
Megumi Sekine

This research studies the factors affecting the conditions required for successful uniform internal finishing of SUS304 stainless steel bent tube by a Magnetic abrasive finishing process. In particular, the effects of the magnetic field and ferrous particles were investigated. Local intensification of the magnetic field is accomplished by offsetting the axis of pole rotation from elbow axis. This effect enables local control of the material removal rate, which leads to uniformity in the finished surface regardless of the initial surface conditions. A two-phase finishing process controlling the size of the ferrous particles is proposed to achieve efficient fine surface finishing.


Sign in / Sign up

Export Citation Format

Share Document