Investigations on the Effect of Tool Speed and Feed Rate on the Friction Stir Processed AZ31B Magnesium Alloys

2012 ◽  
Vol 622-623 ◽  
pp. 700-704
Author(s):  
D. Peter Pushpanathan ◽  
K. Ganesa Balamurugan ◽  
K. Mahadevan

The friction stir processing is a solid state processing technique. The present study investigates the effect of process parameters like tool rotational speed and tool feed on the mechanical and tribological properties of friction stir processed AZ31B magnesium alloy. The experiments were conducted with 3 level 2 factors full factorial design with two replications. The responses were tensile strength, microhardness and wear. The investigation reveals that both the tensile strength and microhardness values were decreasing with decreasing grain size. The minimum wear rates were observed at higher hardness values.

2012 ◽  
Vol 622-623 ◽  
pp. 210-214
Author(s):  
K. Ganesa Balamurugan ◽  
D. Peter Pushpanathan ◽  
K. Mahadevan

The present study investigates the effect of process parameters like tool rotational speed and tool feed on the mechanical and tribological properties of friction stir processed AZ31B magnesium alloy. The experiments were conducted with 3 level 2 factors full factorial design with two replications. The responses were tensile strength, microhardness and wear. The results were analyzed with the help microstructures of the processed samples. The study reveals that, for all responses, the most significant influencing process parameter is the tool rotational speed.


Author(s):  
L. Magondo ◽  
M. B. Shongwe ◽  
R. M. Mahamood ◽  
S. A. Akinlabi ◽  
S. Hassan ◽  
...  

Friction stir processing (FSP) is a solid-state processing technique that has proven to be an efficient surface modification process for producing aluminium matrix composites (AMCs). However, practical challenges still occur during the processing of AMCs even though extensive progress has been made in recent years. In the present study, the influence of FSP process parameters on the tensile property of Al-Ni-Fe composite has been investigated. The process parameters studied were rotational speed and advancing speed. The rotational speed varied between 600 and 1000 rpm while the advancing speed varied between 70 and 210 mm/min. The rotational speed was kept constant at each setting and the advancing speed varied. Other processing parameters were kept constant throughout the experiments. The results were compared with those of the base metal (Al). The results showed that the tensile strength decreased as the advancing speed increased. The highest tensile strength was obtained at a rotational speed of 1000 rpm and an advancing speed of 70 mm/min.


2013 ◽  
Vol 61 (4) ◽  
pp. 893-904 ◽  
Author(s):  
M.S. Węglowski ◽  
S. Dymek ◽  
C.B. Hamilton

Abstract Friction Stir Processing (FSP) is a novel solid state processing technique which can be used for microstructural modification of surface layers in metallic materials. This paper analyzes the effects of FSP process parameters on spindle torque acting on the tool and on the tool temperature. It has been shown that an increase in the rotational speed brings about a decrease in the torque and an increase of temperature. For temperature estimation in the stir zone a numerical model was applied, while for predicting a relationship between the spindle torque acting on the tool, rotational and travelling speeds and the down force, the artificial neural networks approach was employed. Light and electron (scanning and transmission) microscopy investigation showed that the FSP process reduces porosity and produces a more uniform distribution of second-phase particles.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhishek Vyas ◽  
Kawaljit Singh Randhawa

Purpose The purpose of this study is to improve the mechanical and tribological performance of polypropylene (PP) material. The influence of hexagonal boron nitride (h-BN) microparticles on mechanical and tribological properties of PP/polyamide 6 (nylon 6) (PA6) blend has been investigated in this paper. Design/methodology/approach Tensile strength, elongation, elastic modulus and Rockwell hardness were measured to identify the mechanical properties of materials. Coefficient of friction (COF) and wear rates of materials were measured with the help of a pin-on-disc tribometer to check the tribological behavior of blend and composite materials. Findings As a result, a small decrease in tensile strength and elongation and improvement in elastic modulus were found for PP/PA6 and PP/PA6/h-BN composite compared to pure PP. The wear rate of PP/PA6 blend and PP/PA6/h-BN composite was found low compared to pure PP matrix, while the COF of PP/PA6 blend was found slightly higher owing to the presence of harder PA6 matrix which was then improved by the h-BN filler reinforcement in PP/PA6/h-BN composite. The addition of PA6 in PP improved the wear rate of PP by 8–24%, whereas the addition of h-BN microparticles improved the wear rate by 22–50% and 24–44% compared to pure PP and PP/PA6 blend, respectively, in different parameters. Originality/value Modulus of elasticity and hardness of pure PP was enhanced by blending with PA6 and was further improved by h-BN fillers. The addition of PA6 in PP improved the wear rate, while h-BN fillers were found effective in reducing the COF by generating smooth thin lubricating film.


2018 ◽  
Vol 877 ◽  
pp. 98-103
Author(s):  
Dhananjayulu Avula ◽  
D.K. Dwivedi

In this study the effect of process parameters on mechanical and microstructural properties of similar AA6082-T6 joints produced by friction stir welding was investigated. Different samples were produced by varying the transverse welding speeds of the tool from 19 to 75 mm/min and a fixed rotational speed of 635 rpm. A more uniform hardness values in the nugget zone were observed at 48 mm/min welding speed. The lowest hardness values were recorded on nugget zone at all the welding speeds. The increase in welding speed increases ultimate tensile strength and reaches maximum and further increase in welding speed results decrease in tensile strength were observed. The welded joint has highest joint efficiency (52.33 %) obtained at the welding speed of 48 mm/min. Similarly with the increase in welding speed decrease in the percentage elongation were recorded.


2014 ◽  
Vol 941-944 ◽  
pp. 93-96 ◽  
Author(s):  
Shang Xiong Sheng ◽  
Yan Li Guo ◽  
Shou Fa Liu ◽  
Song Lin Wu

In this research, one solid state processing technique, friction stir processing, is applied to modify the AZ61 magnesium alloy billet. The FSP modified AZ61 alloy could be refined to 3-8 μm via the dynamic recrystallization during processing. The AZ61 magnesium alloy billet with 75μm grain size could be refined to about 7.5μm by four-pass friction stir processing. The hardness of the stirred zone could increase to around 70-80 after friction stir processing, and after a further compressive strain of about 3% could raise the hardness to 81. The ductility of the weld direction specimens of the modified alloy could have a 235% elongation at 300°C and 1x10-4 s-1. The grain boundary sliding (GBS) might be the dominant deformation mechanism during superplastic deformation.


Author(s):  
G Hussain ◽  
M Ranjbar ◽  
S Hassanzadeh

Friction stir processing is a novel material processing technique. In this study, neural network–based genetic optimization is applied to optimize the process performance in terms of post-friction stir processing mechanical properties of Al7075 alloy and the energy cost. At first, the experimental data regarding the properties (i.e. elongation, tensile strength and hardness) and the consumed electrical energy are obtained by conducting tests varying two process parameters, namely, feed rate and spindle speed. Then, a numerical model making use of empirical data and artificial neural networks is developed, and multiobjective multivariable genetic optimization is applied to find a trade-off among the performance measures of friction stir processing. For this purpose, the properties like elongation, tensile strength and hardness are maximized and the cost of consumed electrical energy is minimized. Finally, the optimization results are verified by conducting experiments. It is concluded that artificial neural network together with genetic algorithm can be successfully employed to optimize the performance of friction stir processing.


Author(s):  
C Mitterer ◽  
M Lechthaler ◽  
G Gassner ◽  
G A Fontalvo ◽  
L Tóth ◽  
...  

In the automotive industry, there is an increasing demand to apply self-lubricious coatings to reduce fuel and oil consumption. Within this work, self-lubricious nanocomposite coatings consisting of 1-3.5 nm sized CrC nanocrystals embedded in an amorphous hydrogenated carbon (a-C:H) matrix have been developed in a laboratory-scale sputtering system and up-scaled to a production-type plant. The nanostructure and composition of these coatings are presented and correlated to mechanical and tribological properties. With hardness values of about 11 GPa, dry-sliding friction coefficients between 0.08 and 0.18, and wear rates between 3.9×10−16 and 2.8×10−15 m3/N/m, the coatings outperform present state-of-the-art WC/a-C:H coatings and seem to be excellent candidates for applications in automotive engines and drivetrain systems.


2009 ◽  
Vol 410-411 ◽  
pp. 555-562 ◽  
Author(s):  
Carlo Bruni ◽  
Gianluca Buffa ◽  
L. d’Apolito ◽  
Archimede Forcellese ◽  
Livan Fratini

Friction Stir Welding (FSW) has been arousing a continuously increasing interest among joining processes since its invention in 1991. Although mainly used for aluminum alloys, it can also be applied to other light alloys. In the present work, experimental and numerical campaigns have been performed with the aim to study the effect of the tool geometry on the mechanical properties of FSW-ed AZ31 magnesium alloy sheets. The results, presented in terms of tensile strength, ductility, micro-hardness values and numerical field variables distributions, allow to reach a deeper knowledge on the behaviour of such relatively new material when FSW-ed, and can be used for a full optimization of the joints.


2019 ◽  
Vol 13 (4) ◽  
pp. 5804-5817
Author(s):  
Ibrahim Sabry

It is expected that the demand for Metal Matrix Composite (MMCs) will increase in these applications in the aerospace and automotive industries sectors, strengthened AMC has different advantages over monolithic aluminium alloy as it has characteristics between matrix metal and reinforcement particles.  However, adequate joining technique, which is important for structural materials, has not been established for (MMCs) yet. Conventional fusion welding is difficult because of the irregular redistribution or reinforcement particles.  Also, the reaction between reinforcement particles and aluminium matrix as weld defects such as porosity in the fusion zone make fusion welding more difficult. The aim of this work was to show friction stir welding (FSW) feasibility for entering Al 6061/5 to Al 6061/18 wt. % SiCp composites has been produced by using stir casting technique. SiCp is added as reinforcement in to Aluminium alloy (Al 6061) for preparing metal matrix composite. This method is less expensive and very effective. Different rotational speeds,1000 and 1800 rpm and traverse speed 10 mm \ min was examined. Specimen composite plates having thick 10 mm were FS welded successfully. A high-speed steel (HSS) cylindrical instrument with conical pin form was used for FSW. The outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt. %) was 195 MPa at rotation speed 1800 rpm, the outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt.%) was 165 MPa at rotation speed 1000 rpm, that was very near to the composite matrix as-cast strength. The research of microstructure showed the reason for increased joint strength and microhardness. The microstructural study showed the reason (4 %) for higher joint strength and microhardness.  due to Significant   of SiCp close to the boundary of the dynamically recrystallized and thermo mechanically affected zone (TMAZ) was observed through rotation speed 1800 rpm. The friction stir welded ultimate tensile strength Decreases as the volume fraction increases of SiCp (18 wt.%).


Sign in / Sign up

Export Citation Format

Share Document