Development of Poly(dimethylsiloxane)/BaTiO3 Nanocomposites as Dielectric Material

2012 ◽  
Vol 622-623 ◽  
pp. 897-900 ◽  
Author(s):  
Suryakanta Nayak ◽  
Tapan Kumar Chaki ◽  
Dipak Khastgir

Polymer-ceramic nanocomposites with controlled dielectric properties are prepared using poly(dimethylsiloxane) elastomer as base matrix and barium titanate as filler. Barium titanate (BaTiO3) used in this study is prepared by solid state reaction at high temperature. The effect of BaTiO3 nanoparticles on electrical and mechanical properties are extensively studied and found that dielectric constant of nanocomposites increases significantly with the increase in BaTiO3 concentration where as volume resistivity decreases continuously. Different mechanical properties are also studied for all the composites in order to find the effect of filler concentration. Morphology of the prepared BaTiO3 was studied by field emission scanning electron microscope (FESEM).

2018 ◽  
Vol 18 (06) ◽  
pp. 1850035
Author(s):  
Punyapriya Mishra ◽  
Narasingh Deep ◽  
Sagarika Pradhan ◽  
Vikram G. Kamble

Carbon nanotubes (CNTs) are widely explained in fundamental blocks of nanotechnology. These CNTs exhibit much greater tensile strength than steel, even almost similar to copper, but they have higher ability to carry much higher currents, they seem to be a magical material with all these mentioned properties. In this paper, an attempt has been made to incorporate this wonder material, CNT, (with varying percentages) in polymeric matrix (Poly methyl methacrylate (PMMA)) to create a new conductive polymer composite. Various mechanical tests were carried out to evaluate its mechanical properties. The dielectric properties such as dielectric loss and dielectric constant were evaluated with the reference of temperature and frequency. The surface structures were analyzed by Scanning Electron Microscope (SEM).


2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 37148-37157 ◽  
Author(s):  
Mengnan Ruan ◽  
Dan Yang ◽  
Wenli Guo ◽  
Shuo Huang ◽  
Yibo Wu ◽  
...  

Barium titanate (BT) particles, BT-KH570 particles, and polar plasticizer tri-n-butyl phosphate (TBP) were added into BIIR matrix to form a dielectric elastomer composite, which had a high dielectric constant, good mechanical properties, and large actuated strain.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 398
Author(s):  
Chihao Liu ◽  
Jiajian Chen

At present, the research on the high temperature degradation of concrete usually focuses on only the degradation of concrete itself without considering the effect of the plastering layer. It is necessary to take into account the influence of the plastering layer on the high temperature degradation of concrete. With an increase in the water/cement ratio, the explosion of concrete disappeared. Although increasing the water/cement ratio can alleviate the cracking of concrete due to lower pressure, it leads to a decrease in the mechanical properties of concrete after heating. It is proved that besides the water/cement ratio, the apparent phenomena and mechanical properties of concrete at high temperature can be affected by the plastering layer. The plastering layer can relieve the high temperature cracking of concrete, and even inhibit the high temperature explosion of concrete with 0.30 water/cement ratio. By means of an XRD test, scanning electron microscope test and thermogravimetric analysis, it is found that the plastering layer can promote the rehydration of unhydrated cement particles of 0.30 water/cement ratio concrete at high temperature and then promote the mechanical properties of concrete at 400 °C. However, the plastering layer accelerated the thermal decomposition of C-S-H gel of concrete with a water/cement ratio of 0.40 at high temperature, and finally accelerate the decline of mechanical property of concrete. To conclude, the low water/cement ratio and plastering layer can delay the deterioration of concrete at high temperature.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Youyuan Wang ◽  
Kun Xiao ◽  
Can Wang ◽  
Lijun Yang ◽  
Feipeng Wang

This paper focuses on the space charge characteristics in TiO2/cross-linked polyethylene (XLPE) nanocomposites; the unmodified and modified by dimethyloctylsilane (MDOS) TiO2 nanoparticles were added to XLPE matrix with different mass concentrations (1 wt%, 3 wt%, and 5 wt%). The scanning electron microscope (SEM) showed that the MDOS coupling agent could improve the compatibility between TiO2 nanoparticles and XLPE matrix to some extent and reduce the agglomeration of TiO2 nanoparticles compared with unmodified TiO2 nanoparticles; the volume resistivity testing indicated that the volume resistivity of TiO2/XLPE nanocomposites was higher than Pure-XLPE and increased with the increase of filling concentrations. According to the pulsed electroacoustic (PEA) measurements, it was concluded that the space charge accumulation was suppressed by filling TiO2 nanoparticles and the distribution of electric field in samples was improved greatly. In addition, it was found that the injection of homocharge was more obvious in MDOS-TiO2/XLPE than that in UN-TiO2/XLPE and the homocharge injection decreased with the increase of filling concentration.


2018 ◽  
Vol 18 ◽  
pp. 73-78
Author(s):  
Mokhtar Bayarassou ◽  
Mosbah Zidani ◽  
Hichem Farh

The scope of this work is to study of microstructural changes and mechanical properties during natural and artificial ageing treatment of AGS Alloy wire cold drawn with different deformation at ENICAB in Biskra. And as well to know the phase formation during different deformation of aluminum alloys wires. as well as the combined influence of the plastic deformation rate and the aging temperature. Wire section reduction shows a change in microstructure and texture. The methods of characterization used in this work are: scanning electron microscope and X-ray diffraction, micro hardness (Hv).


2020 ◽  
Vol 841 ◽  
pp. 114-118
Author(s):  
Marco Antonio Navarrete Seras ◽  
Francisco Javier Domínguez Mota ◽  
Elia Mercedes Alonso Guzmán ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
...  

. Banks of stone materials from Michoacán, Mexico were characterized, since they are used in the construction of infrastructure in the area. With these materials are made hydraulic concrete mixtures or asphalt mixtures, foundations, paving stones and in restoration of historical monuments. The rocks analyzed and characterized, come from banks of volcanic stone materials and banks of crushed stone materials, which were subjected to mechanical tests such as uniaxial compression resistance (UCR), in addition was used scanning electron microscope (SEM), by means of which the characterization was carried out, obtaining morphological information of the material. The comparison of physical-mechanical properties with the elements they possess is important to estimate their behavior within ceramic matrices or as a structural element.


2000 ◽  
Vol 9 (4) ◽  
pp. 096369350000900 ◽  
Author(s):  
C. Gonzalez ◽  
J. Llorca

The effect of processing on the mechanical properties of Sigma 1140+ SiC fibres was studied through tensile tests carried out on pristine Sigma 1140+ SiC fibres and on fibres extracted from a Ti-6A1-4V-matrix composite. The elastic modulus and the tensile strength were computed after measuring carefully the fibre diameter. The characteristic fibre strength was reduced by 20% and the Weibull modulus by half during composite processing. The analysis of the fracture surfaces in the scanning electron microscope showed that the strength-limiting defects were located around the tungsten core in pristine fibres and predominantly at the surface in fibres extracted from the composite panels. These latter defects were nucleated by the mechanical stresses generated on the fibres during the panel consolidation.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 795 ◽  
Author(s):  
Cheng Zhang ◽  
Shouxin Wang ◽  
Hanxue Qiao ◽  
Zejun Chen ◽  
Taiqian Mo ◽  
...  

In this study, the traditional hot rolling to fabricate Al/Ti laminated metal composites (LMCs) was improved by using a pre-rolling diffusion process. The effect of the pre-rolling diffusion on microstructure and mechanical properties of Al/Ti LMCs were investigated by various methods, such as optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and tensile tests. The results show that, with increasing diffusion temperature, the thickness in diffusion layer was increased and the mechanical properties of LMCs were improved obviously, which was attributed to the optimized interfacial structure after diffusion process. In addition, the formation of TiAl3 intermetallic compounds (IMCs) was detected in the bonding interface, which played an important role in improving the mechanical properties for Al/Ti LMCs. The predicted results of stress-strain curves from rule of mixture (ROM) indicated that, there existed an extra interfacial strengthening in Al/Ti LMCs beside the mechanical properties provided by the contribution of constituent layers. The pre-rolling diffusion process is effective for the optimization of interfacial structure and improvement of mechanical properties in Al/Ti LMCs.


2011 ◽  
Vol 306-307 ◽  
pp. 754-757 ◽  
Author(s):  
Xian Qin Hou ◽  
Jian Ye Liu ◽  
He Yi Ge

The physical and mechanical properties of alumina (Al2O3) ceramics by introduction of zirconia (ZrO2) fiber were studied. ZrO2/Al2O3ceramics at different sintering temperature was investigated by porosity and water absorption measurements, flexual strength and thermal shock resistance analysis. Results showed that Al2O3 ceramics containing 15 wt% ZrO2fiber with sintering temperature of 1650°C exhibited good mechanical properties and thermal shock resistance. The porosity and water absorption were 7.4% and 0.69%, respectively. The flexual strength was 613 MPa and the thermal shock times reached 29 times. Scanning electron microscope (SEM) was used to analyze the microstructure of Al2O3 ceramics.


Sign in / Sign up

Export Citation Format

Share Document