Effects of Alloy Composition and Annealing Treatment on the Performance of Aluminum Conductor

2013 ◽  
Vol 652-654 ◽  
pp. 1016-1022
Author(s):  
Wen Ping Chen ◽  
Yong Su ◽  
Ping Hu ◽  
Yan Jiang

Discuss how iron, copper and magnesium alloy and rare earth cerium influence the electrical and mechanical properties of aluminum conductor using the orthogonal test, to thereby get the best alloy composition that meets the requirement; through test analysis on the conductivity, intensity and elongation at break of aluminum conductor with the best alloy composition, discuss the influence of different annealing temperature and holding time on their performance. The results show that: the best material composition of the aluminum alloy conductor would be 0.25% Fe, 0.40% Cu, 0.05% Mg, 0.30% Ce, 0.008% B, and aluminum and inevitable impurities. The intensity, elongation at break and conductivity of this aluminum conductor would be 110N/mm2, 30.0% and 62.2%IACS respectively. The best annealing process parameters are annealing temperature of 310°C, and holding time for 30min, direct air cool. The intensity of aluminum conductor processed is 129 N/mm2, and the elongation at break, resistivity, and conductivity are 15.0%, 2.782×10-8Ω•m and 62%IACS respectively. The mechanical properties and conductivity of this aluminum conductor both comply with the requirements of wire and cable conductor cores.

2013 ◽  
Vol 745-746 ◽  
pp. 363-370 ◽  
Author(s):  
Xiao Xiang Wu ◽  
Yu Lan Gong ◽  
Shi Ying Ren ◽  
Jing Mei Tao ◽  
Yan Long ◽  
...  

The effect of annealing treatment on the mechanical properties and microstructure of cold-rolled Cu-20% Zn alloys was investigated in this work. Mechanical properties changed dramatically with the increase of temperature. According to the microhardness test, it can roughly concluded that 150 is the optimal annealing temperature for deformation, at which a uniform elongation increased from 1.4658% before annealing to about 6.89%, and the elongation to failure increased from 7.426% to 16.81% with the same strength almost retained. The changes of microstructure during the annealing process are mainly distributed to the improvement of mechanical properties.


2018 ◽  
Vol 186 ◽  
pp. 02001
Author(s):  
Teng-wei Zhu ◽  
Cheng-liang Miao ◽  
Zheng Cheng ◽  
Zhipeng Wang ◽  
Yang Cui ◽  
...  

The influence of the mechanical properties of X70 pipeline steel under different annealing temperature was studied. The corresponding microstructure was investigated by the Field Emission Scanning Electron Microscopy. The results showed that the yield strength and the tensile strength both experienced from rise to decline with the increase of annealing temperature. The grain sizes were coarse and a large amount of cementite precipitated due to preserving temperature above 550 °, which induced matrix fragmentation and deteriorate the -10 ° DWTT Toughness. There were little changes on the microstructure and mechanical properties when the annealing temperature was under 500 °.


2021 ◽  
Vol 1026 ◽  
pp. 49-58
Author(s):  
Bo Feng ◽  
Bai Qing Xiong

The annealing temperature is a key parameter for the mechanical properties and microstructure control of the 2195 Al-Li alloy sheet in the annealing process. In the present study, the effect of annealing temperature on the microstructure of 2195 Al-Li alloy sheet was investigated using a general mechanical testing machine, scanning electron microscope (SEM), transmission electron microscope (TEM), and backscattered electron microscope (EBSD). It was found that the optimized annealing temperature for 2195Al-Li alloy sheet of H112 state is 400°C, the alloy sheet shows the satisfactory mechanical properties. In addition, with the increase of annealing temperature, the δ' phase, the θ' phase and the T1 phase are formed in the alloy sheet, which leads to the strength of the alloy increase. Furthermore, the annealing temperature obviously affect the texture component and intensity during annealing treatment process.


2012 ◽  
Vol 560-561 ◽  
pp. 655-660
Author(s):  
Li Juan Li ◽  
Li Hua Liu ◽  
Jing Wang

In order to guide atmosphere annealing process in industry, the effect of atmosphere and holding times on the surface quality and mechanical properties of the cold-rolling plate of Fe-42% Ni (4J42) was studied. It is found that in the laboratory, surface qualities of all the samples annealed at different annealing condition are all good enough. When the ratio of hydrogen and nitrogen is below 70%:30%, at different holding time, with increasing of H2 proportion, 4J42’s tensile strength and yield strength all increases, and the hardness declines. And except H2:N2=70%:30, when holding time is less than or equal to 1.2min, at different ratio of hydrogen and nitrogen, holding time will influence 4J42’s mechanical properties little. So combine requires in industry with the experiment results, it can be concluded that for 4J42 alloy, annealing at atmosphere of hydrogen nitrogen ratio is less than 70%:30% for about 1.2min is appropriate to atmosphere annealing process in industry.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 369
Author(s):  
Xing Fu ◽  
Rui Wang ◽  
Qingfeng Zhu ◽  
Ping Wang ◽  
Yubo Zuo

Cu-Al-Cu laminated composite was prepared with cold roll bonding process and annealing was carried out to study the phase evolution during the annealing process and its effect on the mechanical properties of the composite. The experimental results showed that after annealing the brittle intermetallics in the interface mainly includes Al4Cu9, AlCu and Al2Cu. With the increase of annealing temperature, the tensile strength of the composite decreases and the elongation shows a different variation which increases at the beginning and then decreases after a critical point. This phenomenon is related to the evolution of intermetallic compounds in the interface of the composite. It was also found that the crack source of the tensile sample is in the interface and delamination appeared at high annealing temperature (450 °C).


2016 ◽  
Vol 850 ◽  
pp. 618-624
Author(s):  
Yu Juan Yang ◽  
Jian Pin Lin ◽  
Bin Wang

To improve the formability of aluminum alloy, a new forming technique-the preform annealing process is proposed. Based on the mechanical properties of the original aluminum alloy AA5182-O with two experienced preforming annealing treatment, and preforming annealing process of a complex geometric shape aluminum door inner panel was numerical simulated by using LS-DYNA software. As a result, the effects of annealing time at 365°C on stamping height of the panel and the optimum annealing time were obtained. The results showed that the preform annealing process was feasible in the door inner panel. At 365°C, the smooth forming of the door inner panel was achieved after annealing for 20s with the pre-deformation amount 97mm, Which are the most suitable parameters.


2013 ◽  
Vol 303-306 ◽  
pp. 2524-2527 ◽  
Author(s):  
Lei Wang ◽  
Guang Hui Min ◽  
Pan Pan Gao ◽  
Xin Ying Wang ◽  
Hua Shun Yu ◽  
...  

The microstructure of magnesium alloy sheets (nominal composition Mg–6Zn–Y in at. %) was investigated with the Optical Microscope (OM), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) technique after the annealing treatment. Tensile test at room temperature was performed to show the influence of annealing treatment on mechanical properties. Experimental results indicate that there are a large number of twin crystals appearing in microstructure of the extruded Mg-Zn-Y alloy sheet at 350 °C. The distinct icosahedral phase appears on the α-Mg matrix in granular form and the strength gets largely improved to the maximum. The uniform distribution of isometric crystal contributes to the best elongation at the annealing temperature of 400 °C.


2006 ◽  
Vol 118 ◽  
pp. 31-34 ◽  
Author(s):  
Won Jong Nam ◽  
Hyung Rak Song ◽  
Kyung Tae Park

The effects of annealing temperature and annealing time on mechanical properties of cold drawn pearlitic steel wires containing 0.84wt% of silicon were investigated. Annealing treatment was performed on cold drawn steel wires for the temperature range of 200°C to 450°C with the different annealing time of 30sec, 1min, 15min and 1hr. The increase of tensile strength at the low annealing temperatures would be related with strain ageing behavior, while the decrease of tensile strength at the high annealing temperature is due to the spheroidization of cementite plates and the occurrence of recovery of the lamellar ferrite in the pearlite.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 61 ◽  
Author(s):  
Jing Wei ◽  
Hongji Sun ◽  
Dechuang Zhang ◽  
Lunjun Gong ◽  
Jianguo Lin ◽  
...  

In the present work, a Ti–26Nb alloy was elaborated in situ by laser additive manufacturing (LAM) with Ti and Nb mixed powders. The alloys were annealed at temperatures ranging from 650 °C to 925 °C, and the effects of the annealing temperature on the microstructure and mechanical properties were investigated. It has been found that the microstructure of the as-deposited alloy obtained in the present conditions is characterized by columnar prior β grains with a relatively strong <001> fiber texture in the build direction. The as-deposited alloy exhibits extremely high strength, and its ultimate tensile strength and yield strength are about 799 MPa and 768 MPa, respectively. The annealing temperature has significant effects on the microstructure and mechanical properties of the alloys. Annealing treatment can promote the dissolution of unmelted Nb particles and eliminate the micro-segregation of Nb at the elliptical-shaped grain boundaries, while increasing the grain size of the alloy. With an increase in annealing temperature, the strength of the alloy decreases but the ductility increases. The alloy annealed at 850 °C exhibits a balance of strength and ductility.


2016 ◽  
Vol 852 ◽  
pp. 171-175
Author(s):  
Cheng Bin Wei ◽  
Hong Yan ◽  
Cai Chen ◽  
Xing Hao Du ◽  
Rong Shi Chen

In this study, the microstructure, texture and mechanical properties of rolled Mg-0.8 Zn-0.3 Gd-0.5 Ca sheets have been investigated. It is shown that the as-cast microstructure of the Mg-0.8 Zn-0.3 Gd-0.5 Ca alloy is composed of coarse grains with fine intermetallic particles. The deformed microstructure of the as-rolled sheets results in the non-basal texture with triple peaks. Upon annealing treatment at different temperatures, the fraction of recrystallized microstructure is increased and the grains grow up. With the increase of annealing temperature, the (0002) basal pole of as-rolled sheets has transformed into texture with double peaks firstly and then into triple peaks. Accompanying the change of microstructure and texture, structure and mechanical anisotropy of the rolled sheets is modified.


Sign in / Sign up

Export Citation Format

Share Document