Numerical Study of Pressure Loss in Ceramic Bed of Thermal Flow Reversal Reactor

2013 ◽  
Vol 655-657 ◽  
pp. 149-153
Author(s):  
Zhen Qiang Gao ◽  
Rui Xiang Liu ◽  
Yong Qi Liu

This paper describes the use of a commercial CFD code, FLUENT, to model fluid flow in thermal flow reversal reactor (TFRR) for lean methane oxidation. A two dimensional model is used. Pressure loss in ceramic bed of TFRR was focused on, and the effects of main factors are presented. The results show that the contours of static pressure in ceramic bed are slightly inclined due to the gradually variation distribution of velocity; the pressure field in distributing header is more uniform than that of collecting header; the ratio of header’s height to ceramic length influences the pressure loss most and with the increase of the ratio the pressure loss of TFRR decreased dramatically; the pressure loss increased with the increase of volume flow rate. The structure of headers is the most important factor which affects the pressure loss of TFRR.

Author(s):  
Abdur Rahim ◽  
Dhirgham Alkhafagiy ◽  
Prabal Talukdar

In a gas turbine combustor, it is necessary to use a diffuser to decelerate the high velocity air stream delivered by the compressor and thus avoid high total pressure loss. The interaction between the diffuser and combustor external flows plays a key role in controlling the pressure loss, air flow distribution around the combustor liner. Flow through casing-liner annulus is crucial as it feeds air to the primary, secondary and dilution holes. It is important that the annulus flow has sufficient static pressure to achieve adequate penetration of the jets. Moreover, the correct proportion of air enters the combustor liner through the dome and the various ports to maintain stable operation and good quality outlet condition. Length of combustor can be reduced if a provision is made for sufficient diffusion in the dump region. In the present numerical study, three can-combustor models of different geometry with a constant dump-gap have been analyzed with emphasis on the flow through annulus. A comparison has been made amongst the three models in terms of flow uniformity, static pressure recovery and total pressure loss. It is observed that flow uniformity in the annulus region is improved if a small divergence in length and a curved shape step height casing is made.


2015 ◽  
Vol 9 (1) ◽  
pp. 687-696 ◽  
Author(s):  
Zongli Li ◽  
Yongqi Liu ◽  
Jinhui Han ◽  
Zhiming Wang

A thermal flow-reversal reactor is candidate for utilizing low concentration ventilation air methane. In this paper, a numerical study is performed by using the FLUENT software to explore the details of the transient preheating and starting process of the thermal flow-reversal reactor oxidation bed. The bed was heated by hot gas, which was transported and distributed through the holes of manifolds to the middle of the bed. The homogeneous porous media and coupled heat transfer models were chosen; and the mass and heat flow distributions passing through the holes, the heat transfer on the outer surface of the manifold and the temperature distribution of the bed were calculated. The results indicate that the heat of the hot gas passing through the holes decreases gradually along the direction of the hot gas flowing in the manifold, causing the temperature of the bed decrease accordingly. The calculated temperatures of the oxidation bed are compared with the tested results. The maximum error between the calculation and the test was 8.9%.


Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


Author(s):  
Manjunath L Nilugal ◽  
K Vasudeva Karanth ◽  
Madhwesh N

This article presents the effect of volute chamfering on the performance of a forward swept centrifugal fan. The numerical analysis is performed to obtain the performance parameters such as static pressure rise coefficient and total pressure coefficient for various flow coefficients. The chamfer ratio for the volute is optimized parametrically by providing a chamfer on either side of the volute. The influence of the chamfer ratio on the three dimensional flow domain was investigated numerically. The simulation is carried out using Re-Normalisation Group (RNG) k-[Formula: see text] turbulence model. The transient simulation of the fan system is done using standard sliding mesh method available in Fluent. It is found from the analysis that, configuration with chamfer ratio of 4.4 is found be the optimum configuration in terms of better performance characteristics. On an average, this optimum configuration provides improvement of about 6.3% in static pressure rise coefficient when compared to the base model. This optimized chamfer configuration also gives a higher total pressure coefficient of about 3% validating the augmentation in static pressure rise coefficient with respect to the base model. Hence, this numerical study establishes the effectiveness of optimally providing volute chamfer on the overall performance improvement of forward bladed centrifugal fan.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4417
Author(s):  
Tingting Xu ◽  
Hongxia Zhao ◽  
Miao Wang ◽  
Jianhui Qi

Printed circuit heat exchangers (PCHEs) have the characteristics of high temperature and high pressure resistance, as well as compact structure, so they are widely used in the supercritical carbon dioxide (S-CO2) Brayton cycle. In order to fully study the heat transfer process of the Z-type PCHE, a numerical model of traditional Z-type PCHE was established and the accuracy of the model was verified. On this basis, a new type of spiral PCHE (S-ZPCHE) is proposed in this paper. The segmental design method was used to compare the pressure changes under 5 different spiral angles, and it was found that increasing the spiral angle θ of the spiral structure will reduce the pressure drop of the fluid. The effects of different spiral angles on the thermal-hydraulic performance of S-ZPCHE were compared. The results show that the pressure loss of fluid is greatly reduced, while the heat transfer performance is slightly reduced, and it was concluded that the spiral angle of 20° is optimal. The local fluid flow states of the original structure and the optimal structure were compared to analyze the reason for the pressure drop reduction effect of the optimal structure. Finally, the performance of the optimal structure was analyzed under variable working conditions. The results show that the effect of reducing pressure loss of the new S-ZPCHE is more obvious in the low Reynolds number region.


Author(s):  
Lijun Liu ◽  
Koichi Kakimoto

In order to control the impurity distribution and remove defects in a crystal grown in Czochralski growth for high quality crystals of silicon, it is necessary to study and control the melt-crystal interface shape, which plays an important role in control of the crystal quality. The melt-crystal interface interacts with and is determined by the convective thermal flow of the melt in the crucible. Application of magnetic field in the Czochralski system is an effective tool to control the convective thermal flow in the crucible. Therefore, the shape of the melt-crystal interface can be modified accordingly. Numerical study is performed in this paper to understand the effect of magnetic field on the interface deflection in Czochralski system. Comparisons have been carried out by computations for four arrangements of the magnetic field: without magnetic field, a vertical magnetic field and two types of cusp-shaped magnetic field. The velocity, pressure, thermal and electromagnetic fields are solved with adaptation of the mesh to the iteratively modified interface shape. The multi-block technique is applied to discretize the melt field in the crucible and the solid field of silicon crystal. The unknown shape of the melt-crystal interface is achieved by an iterative procedure. The computation results show that the magnetic fields have obvious effects on both the pattern and strength of the convective flow and the interface shape. Applying magnetic field in the Czochralski system, therefore, is an effective tool to control the quality of bulk crystal in Czochralski growth process.


2021 ◽  
Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

<p>The study of thermodynamic and biochemical processes of inland water objects using one- and three-dimensional RANS numerical models was carried out both for idealized water bodies and using measurements data. The need to take into account seiche oscillations to correctly reproduce the deepening of the upper mixed layer in one-dimensional (vertical) models is demonstrated. We considered the one-dimensional LAKE model [1] and the three-dimensional model [2, 3, 4] developed at the Research Computing Center of Moscow State University on the basis of a hydrodynamic code combining DNS/LES/RANS approaches for calculating geophysical turbulent flows. The three-dimensional model was supplemented by the equations for calculating biochemical substances by analogy with the one-dimensional biochemistry equations used in the LAKE model. The effect of mixing processes on the distribution of concentration of greenhouse gases, in particular, methane and oxygen, was studied.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (19-05-00249, 20-05-00776). </p><p>1. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Timo V. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geoscientific Model Development. 2016. V. 9(5). P. 1977–2006.<br>2. Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. 34(2). P. 119-132.<br>3. Mortikov, E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 108-115.<br>4. Gladskikh D.S., Stepanenko V.M., Mortikov E.V. On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer // Water Resourses. 2021.V. 45, 9 pages. (in press) </p>


Sign in / Sign up

Export Citation Format

Share Document