Study on Characteristics of Ammonium Nitrogen Adsorption by Biochar Prepared in Different Temperature

2013 ◽  
Vol 724-725 ◽  
pp. 452-456 ◽  
Author(s):  
Ning Liu ◽  
Chong Jun Zhou ◽  
Shi Feng Fu ◽  
Muhammad Imran Ashraf ◽  
En Feng Zhao ◽  
...  

A model was prepared for the preparation of biochar from the biomass of mushroom residue at different carbonization temperature (350 °C,450 °Cand 550 °C) for adsorption characteristics of ammonium nitrogen in water through different ammonium nitrogen concentration, reaction time, pH and temperature. The investigation result showed that the adsorptive amount of these three biochar substances increased quickly with the initial concentration (0-2 h) and the adsorption equilibrium was reached after 4 hours. The adsorptive amount of these three biochars increased with the rise of pH from 5 to 9. Different temperature preparation of biochar on ammonium nitrogen adsorption increases with the rise of temperature. Different temperature preparation of biochar on ammonium nitrogen adsorption amount is in the order of 550 °Cbiochar > 450 °Cbiochar > 350 °Cbiochar.

2014 ◽  
Vol 809-810 ◽  
pp. 493-499
Author(s):  
Li Fang Bao ◽  
Chen Li Wang ◽  
Jin Chuan Gu ◽  
Sheng Zhong ◽  
Rui Wang

The impact on the adsorption of Zn2+of these factors, initial concentration, modification time, reaction time vermiculite dosage, reaction temperature and pH having, and absorption mechanism are studied . The results show that: microwave modification time 30s, reaction time 40min, modified vermiculite dosage 8g/L, reaction temperature 30°C, reaction pH 6, Zn2+ adsorption rate can reach 97.91%, adsorption isotherms of Zn2+ by microwave modified vermiculite show that the adsorption equilibrium is consistent with Langmuir curves, correlation coefficient reached to 0.997 at room temperature.


2012 ◽  
Vol 535-537 ◽  
pp. 2365-2369 ◽  
Author(s):  
Ji Lei Wang ◽  
Ming Hui Li ◽  
Li Gang Wei ◽  
Ying Chong Ma ◽  
Kun Lan Li ◽  
...  

Biodegradable cellulose/collagen beads were successfully prepared by coagulating a blend of cellulose and collagen using 1–butyl–3–methylimidazolium chloride ([C4mim]Cl). The copper ions (Cu(II)) adsorption from aqueous solutions using the prepared beads were investigated at 15 °C as a function of initial concentrations, adsorbents types and adsorption time. The results show that Cu(II) adsorption amount increases with increasing initial concentration. Cellulose/collagen beads can absorb more Cu(II) than cellulose beads and the adsorption equilibrium can be achieved at 30 min. The maxinum adsorption amount of the cellulose/collagen beads (1/1, wt/wt) is estimated to be 0.51 mmol/g. The 90% absorbed Cu(II) on the composite beads can be desorbed by treating with 1 mol/L HCl solution for 180 min.


2021 ◽  
Vol 232 (10) ◽  
Author(s):  
E. Kakaei Lafdani ◽  
Ari Laurén ◽  
Jovana Cvetkovic ◽  
Jukka Pumpanen ◽  
Taija Saarela ◽  
...  

Abstract Forest regeneration operations increase the concentration of nitrogen (N) in watercourses especially outside the growing season when traditional biological water protection methods are inefficient. Biochar adsorption-based water treatment could be a solution for nutrient retention. We studied the total nitrogen (TN) and nitrate–nitrogen (NO3−–N) adsorption–desorption properties of spruce and birch biochar. The adsorption test was performed under four different initial concentrations of TN (1, 2, 3, and 4 mg L−1) using forest runoff water collected from ditch drains of boreal harvested peatland. The results showed that the TN adsorption amount increased linearly from the lowest to the highest concentration. The maximum adsorption capacity was 2.4 and 3.2 times greater in the highest concentration (4 mg L−1) compared to the lowest concentration (1 mg L−1) in spruce and birch biochar, respectively. The NO3−–N adsorption amount of birch biochar increased linearly from 0 to 0.15 mg NO3−–N g biochar−1 when the initial concentration of NO3−–N increased from 0.2 to 1.4 mg L−1. However, in spruce biochar, the initial concentration did not affect NO3−–N adsorption amount. The results indicate that concentration significantly affects the biochar’s capacity to adsorb N from water. The desorption test was performed by adding biochar extracted from the adsorption test into the forest runoff water with low TN concentration (0.2 or 0.35 mg L−1). The desorption results showed that desorption was negligibly small, and it was dependent on the TN concentration for birch biochar. Therefore, biochar can be a complementary method supporting water purification in peatland areas.


2011 ◽  
Vol 287-290 ◽  
pp. 1819-1822
Author(s):  
Shao Hong You ◽  
Hua Lin ◽  
Li Li Ma ◽  
Kai Li

This paper studies the effects of reaction time, temperature, initial concentration of phosphate, pH and organic matter concentration on the adsorbent of briquette ash to phosphate. The results indicate that the briquette ash shows many cavities. The isothermal adsorption process of phosphate on briquette ash can be fitted by Langmuir equations with high correlation coefficient, the maximal adsorption amount is 1250mg·kg-1 according to Langmuir equations. The adsorption amount increases as pH increases in the condition of acidity but decrease in alkalescency, the small molecule organic could reatrain the adsorption of phosphate but strengthen the release of saturation phosphate of briquette ash. The adsorption can be influenced by the adsorbent amount, the unit adsorption amount increases and then decreases slowly.


Author(s):  
Anna Fajdek-Bieda ◽  
Agnieszka Wróblewska ◽  
Piotr Miądlicki ◽  
Jadwiga Tołpa ◽  
Beata Michalkiewicz

AbstractThis work presented the studies with the natural zeolite—clinoptilolite as the catalyst for the isomerization of geraniol. During the research, it turned out that the studied process is much more complicated, and not only isomerization takes place in it, but also dehydration, oxidation, dimerization, cyclization and fragmentation of the carbon chain. Geraniol is an organic raw material which can be obtained not only by a chemical synthesis but also from plants (renewable biomass) by distillation or extraction method, for example a source of geraniol can be a plant—geranium. Before catalytic tests clinoptilolite was characterized by the instrumental methods, such as: XRD, porosity studies—nitrogen adsorption at 77 K, SEM, EDXRF, and FT-IR. Gas chromatography analyses showed that the main products of geraniol isomerization process were 6,11-dimethyl-2,6,10-dodecatrien-1-ol and thumbergol. The selectivity of 6,11-dimethyl-2,6,10-dodecatrien-1-ol and thumbergol depended on the temperature, catalyst content and reaction time. These parameters were changed in the following ranges: 80–150 °C (temperature), 5–15 wt% (catalyst content) and 15–1440 min. (reaction time). The most favorable conditions for 6,11-dimethyl-2,6,10-dodecatrien-1-ol and thumbergol obtaining were: temperature 140 ºC, catalyst content 12.5 wt% and reaction time 180 min. At these conditions, the conversion of geraniol amounted to 98 mol%, and the selectivities of 6,11-dimethyl-2,6,10-dodecatrien-1-ol and thumbergol amounted to 14 and 47 mol%, respectively.


1994 ◽  
Vol 10 (3) ◽  
pp. 399-416 ◽  
Author(s):  
Barrios E. ◽  
Herrera R.

ABSTRACTSeasonally flooded forests represent a transition between terrestrial and aquatic ecosystems. The Mapire river, a tributary of the Orinoco river, floods its surrounding forests during the wet season (May–December). The soils are very acid and the total nitrogen concentration (0.1%) is only half that found in nearby soils flooded by Orinoco waters. Ammonium-nitrogen predominates in the soil during the flooded period while nitrate-nitrogen concentrations are higher in the dry period. Wide fluctuations in the inorganic nitrogen fractions did not considerably affect the annual course of soil nitrogen.The predominance of mineralization versus nitrification (56 and 5 μgsoil month−1respectively) and possibly the synchronization of nitrogen availability with plant demand could be considered as nitrogen conserving mechanisms.In synchrony with the hydrologic cycle, the seasonally flooded forest studied shows a nitrogencycle where inputs and accumulation are maximized when the system is under minimum stress (dry season). During flooding, the system enters a period of dormancy making minimal use of nutrient and energy to avoid or tolerate anaerobiosis.


2021 ◽  
Vol 37 (1) ◽  
pp. 65-70
Author(s):  
Aram Dokht Khatibi ◽  
Kethineni Chandrika ◽  
Ferdos Kord Mostafapour ◽  
Ali Akbar Sajadi ◽  
Davoud Balarak

Conventional wastewater treatment is not able to effectively remove Aromatic hydrocarbons such as Naphthalene, so it is important to remove the remaining antibiotics from the environment. The aim of this study was to evaluate the efficiency of UV/ZnOphotocatalytic process in removing naphthalene antibiotics from aqueous solutions.This was an experimental-applied study that was performed in a batch system on a laboratory scale. The variables studied in this study include the initial pH of the solution, the dose of ZnO, reaction time and initial concentration of Naphthalene were examined. The amount of naphthalene in the samples was measured using GC.The results showed that by decreasing the pH and decreasing the initial concentration of naphthalene and increasing the contact time, the efficiency of the process was developed. However, an increase in the dose of nanoparticles to 0.8 g/L had enhance the efficiency of the process was enhanced, while increasing its amount to values higher than 0.8 g/L has been associated with a decrease in removal efficiency.The results of this study showed that the use of UV/ZnOphotocatalytic process can be addressed as a well-organized method to remove naphthalene from aqueous solutions.


2021 ◽  
Author(s):  
Petru Spataru

Abstract The braking effect of the ammonium derivatives on the natural aquatic environment varies dramatically with the number and nature of organic radical substitutions at nitrogen atom, particularly with their structure, composition and genesis. The most common discrepancy in their toxic effect are showing the natural and synthetic amines. For instance, the values of the maximum allowable concentration (MAC) of the derivatives of the natural origin for drinking water exceed the MAC of the synthetic ones by two orders. On the other hand, it has been found out that 1- naphtylamine (1-NA) inhibitory effect is associated to its toxicity. The Diethylamine (DEA) braking impact on the nitrification process is effectively lower than that of the toxicity. Our experiments show that the carbon-radicals of organic amines act as reducing agents. It is found that DEA decomposition leads to a high NH4+ ions (approx. 3.8 mg/L ammonium nitrogen) concentration in river water samples. By laboratory simulations two types of fixations by microbial organisms have been established: 1) absorption-desorption, the hydromicrobiotic reaction to ammonium (HMBRA) at the instantaneous increase of the concentration of ammonium ion in the river water (so-called shock/stress effect); 2) nitrogen fixation stimulated by a certain concentration (0.05mg/L) of a 1-NA and other amines.


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 673 ◽  
Author(s):  
Burghardt ◽  
Baas ◽  
Gerlach ◽  
Czermak

Fructo-oligosaccharides (FOS) are prebiotic low-calorie sweeteners that are synthesized by the transfer of fructose units from sucrose by enzymes known as fructosyltransferases. If these enzymes generate β-(2,6) glycosidic bonds, the resulting oligosaccharides belong to the neoseries (neoFOS). Here, we characterized the properties of three different fructosyltransferases using a design of experiments approach based on response surface methodology with a D-optimal design. The reaction time, pH, temperature, and substrate concentration were used as parameters to predict three responses: The total enzyme activity, the concentration of neoFOS and the neoFOS yield relative to the initial concentration of sucrose. We also conducted immobilization studies to establish a cascade reaction for neoFOS production with two different fructosyltransferases, achieving a total FOS yield of 47.02 ± 3.02%. The resulting FOS mixture included 53.07 ± 1.66 mM neonystose (neo-GF3) and 20.8 ± 1.91 mM neo-GF4.


2020 ◽  
Vol 842 ◽  
pp. 182-185
Author(s):  
Sha Sha Wang ◽  
Yue Long Xu ◽  
Li Hui Zhang ◽  
Zhen Fa Liu

Phloroglucinol–resorcinol–formaldehyde (PRF) carbon aerogels were synthesized by sol–gel reaction. The results of condition of shrinkage showed a degree of crosslinking more obvious with the increasing of the carbonization temperature. CA900 displays the highest adsorption amount and the biggest loops, as well as an increase in pore size and volume in comparison to the others samples. The SEM images of carbon aerogels under different carbonization temperature possess closer network structure and excellent connectivity, the holes between the network are abundant. The XRD patterns show that the high carbonization temperature can enhance the graphitization degree of carbon aerogels.


Sign in / Sign up

Export Citation Format

Share Document