scholarly journals Nitrogen Recovery from Clear-Cut Forest Runoff Using Biochar: Adsorption–Desorption Dynamics Affected by Water Nitrogen Concentration

2021 ◽  
Vol 232 (10) ◽  
Author(s):  
E. Kakaei Lafdani ◽  
Ari Laurén ◽  
Jovana Cvetkovic ◽  
Jukka Pumpanen ◽  
Taija Saarela ◽  
...  

Abstract Forest regeneration operations increase the concentration of nitrogen (N) in watercourses especially outside the growing season when traditional biological water protection methods are inefficient. Biochar adsorption-based water treatment could be a solution for nutrient retention. We studied the total nitrogen (TN) and nitrate–nitrogen (NO3−–N) adsorption–desorption properties of spruce and birch biochar. The adsorption test was performed under four different initial concentrations of TN (1, 2, 3, and 4 mg L−1) using forest runoff water collected from ditch drains of boreal harvested peatland. The results showed that the TN adsorption amount increased linearly from the lowest to the highest concentration. The maximum adsorption capacity was 2.4 and 3.2 times greater in the highest concentration (4 mg L−1) compared to the lowest concentration (1 mg L−1) in spruce and birch biochar, respectively. The NO3−–N adsorption amount of birch biochar increased linearly from 0 to 0.15 mg NO3−–N g biochar−1 when the initial concentration of NO3−–N increased from 0.2 to 1.4 mg L−1. However, in spruce biochar, the initial concentration did not affect NO3−–N adsorption amount. The results indicate that concentration significantly affects the biochar’s capacity to adsorb N from water. The desorption test was performed by adding biochar extracted from the adsorption test into the forest runoff water with low TN concentration (0.2 or 0.35 mg L−1). The desorption results showed that desorption was negligibly small, and it was dependent on the TN concentration for birch biochar. Therefore, biochar can be a complementary method supporting water purification in peatland areas.

2020 ◽  
Author(s):  
Elham Kakaei Lafdani ◽  
Taija Saarela ◽  
Ari Laurén ◽  
Jukka Pumpanen ◽  
Marjo Palviainen

<p>In drained boreal peatlands, forest regeneration is typically done using a sequence of <strong>c</strong>lear-cutting, ditch network maintenance, site preparation and planting. Following the forest regeneration, export of nutrients to water courses is increased. This results in degradation of water quality, eutrophication, and enhances the formation of harmful algal blooms. The aim of current research was to test a biochar reactor in forest runoff water purification, especially nitrogen recovery from runoff water. The biochar reactor was tested using a meso-scale laboratory experiment by circulating forest runoff water through biochar-filled columns and by monitoring water nutrient concentrations in the inlet and outlet of the columns. Adsorption rate (K<sub>ad</sub>) and maximum adsorption capacity (Q<sub>max</sub>) were quantified by fitting pseudo-first and second order as kinetic models to the experimental data. The results demonstrated that concentration of total nitrogen (TN) decreased by 58% during the 8 weeks experiment, and the majority of TN adsorption has occurred already within the first 3 days. In addition, NO<sub>3</sub>-N and NH<sub>4</sub>-N concentrations decreased below the detection limit in 5 days after the beginning of the experiment. The results demonstrated that the biochar reactor was not able to adsorb TN in low concentrations. The results suggest that biochar reactor can be a useful and effective method for runoff water purification in clear-cut forests and deserves further development and testing. This makes biochar reactor a promising water protection tool to be tested in sites where there is a risk for high rate of nutrient export after forest regeneration.</p><p><strong>Keywords</strong>: adsorption, biochar reactor, column experiment, inorganic nitrogen, total nitrogen.</p>


2013 ◽  
Vol 724-725 ◽  
pp. 452-456 ◽  
Author(s):  
Ning Liu ◽  
Chong Jun Zhou ◽  
Shi Feng Fu ◽  
Muhammad Imran Ashraf ◽  
En Feng Zhao ◽  
...  

A model was prepared for the preparation of biochar from the biomass of mushroom residue at different carbonization temperature (350 °C,450 °Cand 550 °C) for adsorption characteristics of ammonium nitrogen in water through different ammonium nitrogen concentration, reaction time, pH and temperature. The investigation result showed that the adsorptive amount of these three biochar substances increased quickly with the initial concentration (0-2 h) and the adsorption equilibrium was reached after 4 hours. The adsorptive amount of these three biochars increased with the rise of pH from 5 to 9. Different temperature preparation of biochar on ammonium nitrogen adsorption increases with the rise of temperature. Different temperature preparation of biochar on ammonium nitrogen adsorption amount is in the order of 550 °Cbiochar > 450 °Cbiochar > 350 °Cbiochar.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 478 ◽  
Author(s):  
Elham Kakaei Lafdani ◽  
Taija Saarela ◽  
Ari Laurén ◽  
Jukka Pumpanen ◽  
Marjo Palviainen

Biochar can be an effective sorbent material for removal of nutrients from water due to its high specific surface area, porous structure, and high cation and anion exchange capacity. The aim of this study was to test a biochar reactor and to evaluate its efficiency in runoff water purification and consecutive nutrient recycling in clear-cut peatland forests. The goodness of the method was tested in a meso-scale (water volume thousands of liters) reactor experiment by circulating runoff water through wood biochar-filled columns and by determining water nutrient concentrations in the column inlet and outlet. The pseudo-first and second order kinetic models were fitted to the experimental data and the adsorption rate (Kad) and maximum adsorption capacity (Qmax) of the biochar reactor were quantified. The concentration of total nitrogen (TN) decreased by 58% during the 8-week experiment; the majority of TN adsorption occurred within the first 3 days. In addition, NO3-N and NH4-N concentrations decreased below the detection limit in 5 days after the beginning of the experiment. The maximum adsorption capacity of the biochar reactor varied between 0.03–0.04 mg g−1 biochar for NH4-N, and was equal to 0.02 mg g−1 biochar for TN. The results demonstrated that the biochar reactor was not able to adsorb TN when the water TN concentration was below 0.4 mg L−1. These results suggest that a biochar reactor can be a useful and effective method for runoff water purification in clear-cut forests and further development and testing is warranted. Unlike traditional water protection methods in peatland forestry, the biochar reactor can effectively remove NO3-N from water. This makes the biochar reactor a promising water protection tool to be tested in sites where there is the risk of a high rate of nutrient export after forest harvesting or drainage.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2295
Author(s):  
Marwa El-Azazy ◽  
Ahmed S. El-Shafie ◽  
Hagar Morsy

Biochars (BC) of spent coffee grounds, both pristine (SCBC) and impregnated with titanium oxide (TiO2@SCBC) were exploited as environmentally friendly and economical sorbents for the fluroquinolone antibiotic balofloxacin (BALX). Surface morphology, functional moieties, and thermal stabilities of both adsorbents were scrutinized using SEM, EDS, TEM, BET, FTIR, Raman, and TG/dT analyses. BET analysis indicated that the impregnation with TiO2 has increased the surface area (50.54 m2/g) and decreased the pore size and volume. Batch adsorption experiments were completed in lights of the experimental set-up of Plackett-Burman design (PBD). Two responses were maximized; the % removal (%R) and the adsorption capacity (qe, mg/g) as a function of four variables: pH, adsorbent dosage (AD), BALX concentration ([BALX]), and contact time (CT). %R of 68.34% and 91.78% were accomplished using the pristine and TiO2@SCBC, respectively. Equilibrium isotherms indicated that Freundlich model was of a perfect fit for adsorption of BALX onto both adsorbents. Maximum adsorption capacity (qmax) of 142.55 mg/g for SCBC and 196.73 mg/g for the TiO2@SCBC. Kinetics of the adsorption process were best demonstrated using the pseudo-second order (PSO) model. The adsorption-desorption studies showed that both adsorbents could be restored with the adsorption efficiency being conserved up to 66.32% after the fifth cycles.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1426
Author(s):  
Zhanhua Ji ◽  
Dengyu Li

The stability of carbon nanotubes (CNTs) suspension is a key factor in determining their transport, fate, and toxicity in an aquatic environment, which is significantly influenced by CNTs’ nature and water chemistry. Macromolecular dissolved organic matter (DOM) is reported to influence the stability of CNTs aggregation. However, little is known on small polar dissolved organic compound’s effects on CNTs aggregation. Nitrobenzene was selected to investigate its interaction with three different functionalized multiwalled CNTs (MWCNTs). Both the stability of CNTs aggregation and sorption hysteresis were affected by the initial concentration of nitrobenzene and the surface functionalization coverage of MWCNTs. At the initial concentration below 580 mg/L, the thermodynamic index of irreversibility (TII) and turbidity of CNTs suspension had the same tendency, indicating that the underlying mechanism is closely related. A conceptual adsorption–desorption model was proposed to further explain the relationship between the sorption hysteresis and stability of MWCNTs suspension under different initial concentrations of nitrobenzene. This provided data support to further clarify the environmental behaviors and risks of CNTs.


2014 ◽  
Vol 529 ◽  
pp. 22-25 ◽  
Author(s):  
Li Wei Xie ◽  
Ze Long Xu ◽  
Yan Hua Huang ◽  
Shuang Cao ◽  
Zong Qiang Zhu ◽  
...  

Adsorption of ammonia nitrogen from aqueous solution onto the bagasse adsorbent has been investigated to evaluate the effects of Adsorbent dose, initial NH4+-N concentration, and pH on the removal systematically. With increasing initial concentration, the amount of ammonia nitrogen sorbed onto the adsorbent increased until it gradually decreased due to the initial concentration exceed 50 mg·L-1, and the maximum adsorption capacity was observed for the sample to be 1.31 mg·g-1 at the initial concentration of 30 mg·L-1, and the corresponding removal rates decreased from 94.01 to 3.89%, with increase in initial concentration from 5 to 100 mg·L-1. Adsorption capacities decreased from 6.04 to 0.49 mg·g-1 with increasing adsorbent dose from 0.1 to 1.5g. What’s more, under alkaline condition, the removal efficiency of ammonia nitrogen from aqueous solution onto the samples were superior to that under acidity and neutrality condition.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
N. Mojoudi ◽  
N. Mirghaffari ◽  
M. Soleimani ◽  
H. Shariatmadari ◽  
C. Belver ◽  
...  

AbstractThe purpose of this study was the preparation, characterization and application of high-performance activated carbons (ACs) derived from oily sludge through chemical activation by KOH. The produced ACs were characterized using iodine number, N2 adsorption-desorption, Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The activated carbon prepared under optimum conditions showed a predominantly microporous structure with a BET surface area of 2263 m2 g−1, a total pore volume of 1.37 cm3 g−1 and a micro pore volume of 1.004 cm3 g−1. The kinetics and equilibrium adsorption data of phenol fitted well to the pseudo second order model (R2 = 0.99) and Freundlich isotherm (R2 = 0.99), respectively. The maximum adsorption capacity based on the Langmuir model (434 mg g−1) with a relatively fast adsorption rate (equilibrium time of 30 min) was achieved under an optimum pH value of 6.0. Thermodynamic parameters were negative and showed that adsorption of phenol onto the activated carbon was feasible, spontaneous and exothermic. Desorption of phenol from the adsorbent using 0.1 M NaOH was about 87.8% in the first adsorption/desorption cycle and did not decrease significantly after three cycles. Overall, the synthesized activated carbon from oily sludge could be a promising adsorbent for the removal of phenol from polluted water.


2012 ◽  
Vol 465 ◽  
pp. 146-149 ◽  
Author(s):  
Wei Li ◽  
Yang Zhou ◽  
Wen Hui Ma ◽  
Shi Xing Wang ◽  
Yong Nian Dai

4-Bromo-1, 8-naphthalic anhydride and N, N-Dimethylethylenediamine covalently modified silica nanoparticles were synthesized. It can be utilized as an adsorbent for Pb (II), showing excellent adsorption capacity. According to the Langmiur fitting, the maximum adsorption capacity for lead ion is up to 293.26 mg/g. And the adsorption percentage is greater than 90 % when the initial concentration is lower than 100 mg/l.


2012 ◽  
Vol 535-537 ◽  
pp. 2365-2369 ◽  
Author(s):  
Ji Lei Wang ◽  
Ming Hui Li ◽  
Li Gang Wei ◽  
Ying Chong Ma ◽  
Kun Lan Li ◽  
...  

Biodegradable cellulose/collagen beads were successfully prepared by coagulating a blend of cellulose and collagen using 1–butyl–3–methylimidazolium chloride ([C4mim]Cl). The copper ions (Cu(II)) adsorption from aqueous solutions using the prepared beads were investigated at 15 °C as a function of initial concentrations, adsorbents types and adsorption time. The results show that Cu(II) adsorption amount increases with increasing initial concentration. Cellulose/collagen beads can absorb more Cu(II) than cellulose beads and the adsorption equilibrium can be achieved at 30 min. The maxinum adsorption amount of the cellulose/collagen beads (1/1, wt/wt) is estimated to be 0.51 mmol/g. The 90% absorbed Cu(II) on the composite beads can be desorbed by treating with 1 mol/L HCl solution for 180 min.


2017 ◽  
Vol 42 (3) ◽  
pp. 269-281
Author(s):  
Lvling Zhong ◽  
Liang Zhang ◽  
Hongliang Shi

A series of nitrogen-doped mesoporous carbons (NDMCs) was prepared using p-phenylenediamine and glyoxal as a carbon source and mesoporous silica as a hard template. N2 adsorption–desorption isotherms indicated that mesopores with a wider distribution exist in NDMCs. Elemental analysis showed that the N content on the surface of NDMC-800 was 9.9at.%, with a result close to 8.4at.% from X-ray photoelectron spectroscopy. The adsorption capacity of NDMCs for crystal violet (CV) in aqueous solution was investigated. Static equilibrium data were well described by the Langmuir isotherm model, with a maximum adsorption capacity of 243.9 mg g−1. Adsorption kinetics data suggested that the adsorption control process follows the pseudo first-order kinetics model. The results showed that this carbon material has the potential for application in adsorption of CV.


Sign in / Sign up

Export Citation Format

Share Document