Effect of Sonofication of Carbon Black and 3-Aminopropyltriethoxysilane (APTS) on the Properties of Rubber-Carbon Black Composite

2013 ◽  
Vol 746 ◽  
pp. 203-210
Author(s):  
E. Budianto ◽  
M. Anggaravidya ◽  
Sudirman ◽  
C. Liza ◽  
B. Soegijono ◽  
...  

In order to improve the mechanical properties of natural rubber so it can be used as raw material for industrial component, it is required to add filler and coupling agent to the natural rubber. In previous study, carbon black obtained from sonofication process for 3 and 5 hours was added (filled) to improve thermal and mechanical properties of rubber-carbon black, where the improvement was influenced by the period of sonofication of carbon black, which subsequently added to the rubber-carbon black composite.In this study, various rubber-carbon composites have been synthesized using thin pale crepe (TPC) natural rubber as matrix, strengthened by carbon black N 660, sonoficated N 660, and addition of 2 phr of 3-aminopropyltriethoxysilane (APTS) to each composite. The obtained rubber-carbon black composite was characterized by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS). Universal Testing Machine was used to characterize its mechanical properties.Bound rubber value and mechanical properties of rubber-carbon black composite improved as a result of the addition of carbon black obtained from sonofication and APTS. However, contrast result was observed when sonoficated carbon black and APTS were added simultaneously.

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1725
Author(s):  
Purba Purnama ◽  
Muhammad Samsuri ◽  
Ihsan Iswaldi

As one of the most attractive biopolymers nowadays in terms of their sustainability, degradability, and material tune-ability, the improvement of polylactide (PLA) homopolymer properties by studying the utilization of stereocomplex polylactide (s-PLA) effectively and efficiently is needed. In this sense, we have studied the utilization of s-PLA compared to poly D-lactide (PDLA) homopolymers as a nucleating agent for PLA homopolymers. The mechanical and thermal properties and crystallization behavior of PLA homopolymers in the presence of nucleating agents have been evaluated using a universal testing machine, differential scanning calorimeter, and X-ray diffractometer instruments, respectively. PDLA and s-PLA materials can be used to increase the thermal and mechanical properties of poly L-lactide (PLLA) homopolymers. The s-PLA materials increased the mechanical properties by increasing crystallinity of the PLLA homopolymers. PLLA/s-PLA enhanced mechanical properties to a certain level (5% s-PLA content), then decreased them due to higher s-PLA materials affecting the brittleness of the blends. PDLA homopolymers increased mechanical properties by forming stereocomplex PLA with PLLA homopolymers. Non-isothermal and isothermal evaluation showed that s-PLA materials were more effective at enhancing PLLA homopolymer properties through nucleating agent mechanism.


2012 ◽  
Vol 624 ◽  
pp. 279-282
Author(s):  
Feng Zhan ◽  
Nan Chun Chen

Talc was modified by aluminate coupling agent (ACA) before filling it into high density polypropylene (HDPP) to prepare talc/HDPP composites. Scanning electron microscopy (SEM), wear testing machine, electronic universal testing machine, and impact testing machine were used to analyze the surface modification and the effects of modified talc on friction and mechanical properties of modified talc/HDPP composites. The results indicate that after modified the lamellar structure of talc particles are open and the dispersion of particles are improved, and the edges and corners of surface become softer. Friction properties indicate that when the talc content is 8 wt%, both µ and K are at a lower value, which show that have better wear resistance. The frictional surface is relatively smooth and no furrow trace has found. Mechanical properties show that with talc content increasing, tensile strength and flexural strength of composites increase.


2013 ◽  
Vol 86 (2) ◽  
pp. 205-217 ◽  
Author(s):  
Hedayatollah Sadeghi Ghari ◽  
Zahra Shakouri

ABSTRACT Research was undertaken on natural rubber (NR) nanocomposites with organoclays. A double-network (DN) structure is formed when a partially cross-linked elastomer is further cross-linked during a state of strain. Two methods were used in the preparation of NR/organoclay nanocomposites: the ordinary method (single-network NR nanocomposite) and double-networked NR (DN-NR) nanocomposites. The single-networked NR nanocomposites were used for comparison. The effects of organoclay (5 phr) with a different extension ratio on curing characteristics, mechanical properties, hardness, swelling behavior, and morphology of single- and double-networked NR nanocomposites were studied. The results showed that double-networked NR nanocomposites exhibited higher physical and mechanical properties. The tensile strength of DN-NR nanocomposites increased up to 33 MPa (more than four times greater than that of pure NR) and then decreased with an increasing extension ratio. Modulus and hardness continuously increased with an increased extension ratio. The microstructure of the NR/organoclay systems was studied by X-ray diffraction and field emission scanning electron microscopy. The effects of different extension ratios on the dispersion of organoclay layers in the nanocomposites were investigated. Generally, results showed that the optimized extension ratio in DN nanocomposites was equal (or about or around) to α= 2.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Rindri Ruri Suryani ◽  
Abdul Hakim ◽  
Yusrianti Yusrianti ◽  
Shinfi Wazna Auvaria ◽  
Ika Mustika

Plastik sintetis merupakan plastik yang biasanya berbasis konvensional. Sumber bahan baku plastik sintetis merupakan energi yang tidak dapat diperbarui yaitu minyak bumi. Plastik sintetis memiliki sifat fisik yang fleksibel, ringan, kuat dan ekonomis. Plastik sintetis dapat menyebabkan permasalahan lingkungan yaitu sulitnya plastik sintetis yang terdegradasi oleh tanah. Sehingga dapat menurunkan kualitas tanah dan mikriorganisme. Upaya pencegahan permasalahan sampah plastik dapat dilakukan dengan pengembangan pembuatan plastik dari bahan polimer alami yang disebut bioplastik.  Plastik biodegradableumumnya terbuat dari bahan polisakarida dan dapat terbuat dari sumber protein, salah satunya limbah tahu. Penelitian ini bertujuan untuk memanfaatkan limbah tahu yang diekstrak untuk diambil proteinnyasebagai bahan dasar pembuatan plastik biodegradable, serta untuk mengetahui sifat mekanik dan lama bioplastik protein ampas tahu terdegradasi oleh tanah. Pembuatan bioplastik membutuhakan bahan pemlastis dan bahan aditif untuk menghasilkan plastik yang fleksibel. Penelitian  ini menggunakan penambahan plasticizerglycerin dengan variasi 30%,40%,50% dan bahan pengisi 20%. Penambahan chitosan sebanyak 5 ml. Hasil penelitian pembuatan protein ampas tahu menunjukkan bahwa kadar protein ampas tahu yang dihasilkan dari tahap diekstraksi sebesar 29.72%. Hasil pengujian kuat tarik bioplasik dari protein ampa tahu menggunakan alat UTM (Universal Testing Machine) yangberkisar antara 1.04-2.12 Mpa yang telah memenuhi standar bioplastik menurut Japan Industrial Standard (JIS). Sedangkan hasil pengujian daya serap air menggunakan metode swelling memiliki nilai tertinggi pada glycerin 50% sebesar 196% dalam kurun waktu 30 menit. Sedangkan daya serap paling baik terdapat pada variasi glycerin 30% sebesar 49.7%. Bioplastik berbahan dasar protein ampas tahu dapat terdegrdasi dengan sempurna dalam kisaran waktu 7-14 hari.  Kata kunci: biodegradable plastik, biodegradasi, chitosan, glycerin, sifat mekanik.  Synthetic plastics are plastics that are usually conventional based. The source of synthetic plastic raw material is non-renewable energy, namely petroleum. Synthetic plastics have physical properties that are flexible, lightweight, strong and economical. Synthetic plastics can cause environmental problems, namely the difficulty of synthetic plastics which are degraded by soil. So that it can reduce soil quality and microorganisms. Efforts to prevent the problem of plastic waste can be done by developing the manufacture of plastics from natural polymer materials called bioplastics. Biodegradable plastics are generally made of polysaccharides and can be made from protein sources, one of which is tofu waste. This study aims to utilize the extracted tofu waste for protein as a basic material for making biodegradable plastics, as well as to determine the mechanical properties and length of time for the tofu pulp protein to be degraded by the soil. The manufacture of bioplastics requires plasticizers and additives to produce flexible plastics. This study used the addition of glycerol plasticizer with a variation of 30%, 40%, 50% and 20% filler. The addition of 5 ml of chitosan. The results of the research on making tofu pulp protein showed that the protein content of tofu pulp from the extraction process was 29.72%. Bioplastic tensile strength value from tofu pulp ranges from 1.04-2.12 MPa which has met the bioplastic standards according to the Japan Industrial Standard (JIS). The highest water absorption capacity of bioplastics from tofu pulp protein was found in the glycerol 50% variation of 196% within 30 minutes. Meanwhile, the lowest absorption rate was found in the 30% glycerol variation of 49.7%. Bioplastics from tofu pulp protein can completely decompose in 7-14 days. Keywords: chitosan, degradation, glycerol, mechanical properties, plastic biodegradable.


2012 ◽  
Vol 557-559 ◽  
pp. 1053-1056
Author(s):  
Nai Qiang Hu ◽  
Xiu Jun Liu ◽  
Zhi Hai Feng ◽  
Zhen Fan ◽  
Tong Qi Li

In this work, carbon/carbon composites were prepared by a hot-pressing technique at a relatively low temperature. The effect of Graphite content on the mechanical properties of mesophase pitch-unidirectional carbon/carbon composites was investigated by tensile testing, and the fracture surfaces of carbon/carbon composites are observed by scanning electron microscopy (SEM). Results showed that the interlaminar tensile strength of the carbon/carbon Composites was improved as content of natural flake graphite in raw material increased from 5% to 10%. However, a decrease of interlaminar tensile strength was observed when content of natural flake graphite was higher than 10%. Even the interlaminar tensile strength is lower than that of composites which is not added Graphite.


2014 ◽  
Vol 87 (2) ◽  
pp. 250-263 ◽  
Author(s):  
Sasidharan Krishnan ◽  
Rosamma Alex ◽  
Thomas Kurian

ABSTRACT A process for production of carbon black/silica/nanoclay ternary filler masterbatch from fresh natural rubber (NR) latex was standardized. The fillers, nanoclay, carbon black, and silica were incorporated in fresh NR latex by a modified coagulation process. The latex, mixed with filler dispersions, coagulated immediately on addition of acids. The coagulum containing fillers was dried at 70 °C in an air oven to get the latex filler masterbatch, which was further processed in the conventional way. The masterbatch compounds containing only silica/carbon black showed a higher level of vulcanization as compared with the corresponding dry mixes. The mechanical properties, such as tensile strength, modulus, tear strength, abrasion resistance, and hardness, increased with the proportion of nanoclay in the mixes up to 5 phr, and with a greater amount, the change was only marginal. Lower tan delta values were observed for all of the masterbatches containing nanoclay in the ranges of 3 to 10 phr compared with the control dry mix containing 25/25 carbon black/silica. The improvement in mechanical properties and dynamic properties shown by the masterbatches over the conventional mill-mixed compounds was attributed to factors related to filler dispersion, as evidenced from the data from dispersion analyzer images, X-ray diffractograms, and a higher level of vulcanization.


2015 ◽  
Vol 22 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Jianbing Guo ◽  
Daohai Zhang ◽  
Huiju Shao ◽  
Kaizhou Zhang ◽  
Bin Wu

AbstractA series of long glass fiber (LGF)-reinforced epoxy resin (ER), thermoplastic polyurethane (TPU) elastomers, and poly(methyl methacrylate) (PMMA) composites were prepared by using self-designed impregnation device. Dynamic mechanical properties of the LGF/ER/TPU/PMMA composites have been investigated by using dynamic mechanical thermal analysis (DMA). The results indicated that the content of PMMA and TPU and scanning frequency had important influence on dynamic mechanical properties and glass transition of the LGF/ER/TPU/PMMA composites. In addition, the Arrhenius relationship has been used to calculate the activation energy of α-transition of the LGF/ER/TPU/PMMA composites. The thermal properties of the LGF/ER/TPU/PMMA composites were studied by thermogravimetric analysis (TGA). Morphology and mechanical properties of the composites are investigated by scanning electron microscopy (SEM), a universal testing machine, and a ZBC-4 Impact Pendulum.


Author(s):  
Andžela Šešok ◽  
Deividas Mizeras ◽  
Algirdas Vaclovas Valiulis ◽  
Julius Griškevičius ◽  
Mangirdas Malinauskas

In this work we aim to determine the mechanical properties of 3D printed PLA objects having various orientation woodpile microarchitectures. In this work we chose three different 3D microarchitectures: woodpile BCC (each layer consists of parallel logs which are rotated 90 deg every next layer), woodpile FCC (every layer is additionally shifted half of the period in respect to the previous parallel log layer) and a rotating woodpile 60 deg (each layer is rotated 60 deg in respect to the previous one). Compressive and bending tests were carried out TIRAtest2300 universal testing machine. We found that 60 deg rotating woodpile geometry had the highest values which was approximately 3 times than the BCC or FCC log arrangements. Thus we prove that employing low-cost equipment and applying the same raw material one can create objects of desired rigidity.


2013 ◽  
Vol 747 ◽  
pp. 174-177 ◽  
Author(s):  
Waraporn Suvannapruk ◽  
Faungchat Thammarakcharoen ◽  
Watchara Chokevivat ◽  
Pattaravit Rukskul ◽  
Jintamai Suwanprateeb

In this study, four types of PEG-PPG-PEG copolymers solids and pastes having different molecular mass (Mw~5800, 8400, 12000 and 14600) were selected and mixed at various compositions ranging from 40 to 60 % by weight. The textures and handling characteristics of the prepared samples were evaluated in comparison to that of the commercial non-resorbable bone wax. Thermal and mechanical properties of the blends were determined by a differential scanning calorimeter and a universal testing machine respectively. It was found that the combination of solid (Mw~8400) and paste-like (Mw~12000) copolymers at the ratio of 40:60 gave the closest smooth texture with good smearability and had similar melting temperature to the commercial bone wax, but having slightly lower compressive stiffness. Preliminary cytotoxicity of the selected formulations against osteoblasts revealed that the cell viability was greater than 70 % indicating that the prepared samples did not show any cytotoxic potential.


Sign in / Sign up

Export Citation Format

Share Document