Research on the Experiment Effect of Two-Phase Anaerobic Baffled Reactor Treatment Craft

2013 ◽  
Vol 781-784 ◽  
pp. 1945-1949
Author(s):  
Ling Jing ◽  
Xin Xia Wang

This paper presented Low investment and low running cost Two-phase Anaerobic Baffle Treatment Craft for living wastewater treatment, it designed Two-phase anaerobic reactor and carried out a successful launch and Experiment research. The results are as follows: 1. The experiment uses the start method that by shortening HRT to raise the load, after 53 days completes experiment start.2. By the analysis of HRT to the system effect, suggest that the best HRT is 6 h when the craft processes sewage. 3. The system clean rates of the total nitrogen and total phosphoric are respectively 21.05% and 20.1%.4. The temperature has an influence on clean effect of the system, when the temperature descends from 20 °C to 10 °C, system clean rate of average COD descends from 87.1% to 52.4%. 5. Reactor VFA and PH measurement results express that the craft could circulate stably and efficiently.

2013 ◽  
Vol 448-453 ◽  
pp. 600-603
Author(s):  
Ling Jing ◽  
Xin Xia Wang

Aiming at the fact that the low concentration sewage in small cities, this paper presents Two-phase Anaerobic Baffled Reactor (TAABR) for living wastewater treatment, importantly, it designs and researches Two-phase Anaerobic Baffled Reactor and its advantages, designs a trial project according to the characteristics of the reactor equip. The experiment uses the method that by shortening HRT to raise the load to start and analyses the operating results during startup as follows: 1. 53 days later anaerobic reactor start-up successes.2. When the load is 0.5kgCOD/m3.d, the removal rate of COD is more than 80%. 3. PH value is not the main limiting factors during start up in the reactor and there is basically no danger of excessive acidification.


2012 ◽  
Vol 550-553 ◽  
pp. 3180-3183 ◽  
Author(s):  
Guo Chen Zheng ◽  
Jian Zheng Li ◽  
Wei Li ◽  
Zhu Jun Tian ◽  
Shuang Shi Dong ◽  
...  

Anaerobic fermentative technology is an important route to solving environmental pollution and resources problems. Combined hydrogen and methane production in a two-stage process is a concept which has been developed in recent years Anaerobic biological treatment organic wastewater can produce large amounts of hydrogen and methane,which can be used as energy carrier. At present,the research focusing on the adjustment of fermentation hydrogen-methane production has been conducted. Furthermore, the simultaneous hydrogen-methane production was tested and optimized. However, it lacked combined hydrogen-methane production in an anaerobic reactor in literature so far. Based on preview experiment, the paper studied the simultaneous hydrogen-methane fermentation in an anaerobic baffled reactor (ABR) system. ABR has the advantage of biomass phase separation and integration of acidogenic and methanogenic processes to simultaneously conduct hydrogen-methane production during wastewater treatment. Through deep biohydrogen production, it can enhance the activity of hydrogen-producing acetogens (HPA) and the efficiencies of the combined hydrogen-methane fermentation system. It showed to enhance the activity of HPA was the key to the combined hydrogen-methane production.


2021 ◽  
Vol 894 (1) ◽  
pp. 012017
Author(s):  
H Trihidayanti ◽  
R Ratnaningsih ◽  
B Iswanto

Abstract One of the foods favorites by Indonesian people is tofu. In the process of making tofu, it produces wastewater. The tofu wastewater must be treated first to reduce environmental pollution. To treat the liquid waste, it is using biological treatment by an anaerobic baffled reactor with bio-ball. The purpose of this study was to determine the optimum time at 75% tofu wastewater concentration. The detention time used in this study was 12 hours, 24 hours, 36 hours and 48 hours. Seeding takes time about 45 days, with the obtained VSS was 5550 mg/L. Furthermore, acclimatization in the reactor takes about 30 days, with an efficiency of removing COD of 86.3%. The results obtained that at 12 hours of detention, there is a COD allowance of 79.8%, 24 hours of detention time there is a COD allowance of 85.4%, 36 hours of detention time 86.3%, and 48 hours of detention time 88.4 %. It shows that the optimum detention time in this anaerobic reactor is 48 hours. However, the COD level was 765.3 mg/L is still slightly above the quality standard according to the Minister of Environment Regulation No.5 2014, which is the maximum COD level of 300 mg/L.


2012 ◽  
pp. 756-761 ◽  
Author(s):  
Miroslav Hutnan ◽  
Štefan Tóth ◽  
Igor Bodík ◽  
Nina Kolesárová ◽  
Michal Lazor ◽  
...  

The possibility of joint treatment of spent sugar beet pulp and wastewater from a sugar factory was studied in this work. Works focused on processing of spent sugar beet pulp separately or together with other substrates can be found in the literature. In the case of some sugar factories, which have spare capacity in the anaerobic reactor on an anaerobic-aerobic wastewater treatment plant, joint processing of spent sugar beet pulp and wastewater from the sugar factory might be an interesting option. The results of the operation of a pilot plant of an anaerobic reactor with a capacity of 3.5 m3 are discussed. Operation of the pilot plant confirmed the possibility of cofermentation of these materials. The organic loading rate achieved in the anaerobic reactor was higher than 6 kg/(m3·d) (COD), while more than half of the load was provided by spent sugar beet pulp. The addition of sugar beet pulp decreased the concentration of ammonia nitrogen in the anaerobic reactor and it was even necessary to add nitrogen. However, the nitrogen content in sludge water depends on the C:N ratio in the processed sugar beet pulp, therefore this knowledge cannot be generalized. About 1.5 to 2-fold biogas production can be expected from the cofermentation of wastewater with sugar beet pulp in an anaerobic reactor, compared with the biogas production from just wastewater treatment.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 65-72 ◽  
Author(s):  
H.-H. Schierup ◽  
H. Brix

Since 1983 approximately 150 full-scale emergent hydrophyte based wastewater treatment plants (reed beds) have been constructed in Denmark to serve small wastewater producers. The development of purification performance for 21 plants representing different soil types, vegetation, and hydraulic loading rates has been recorded. Cleaning efficiencies were typically in the range of 60-80% reduction for BOD, 25-50% reduction for total nitrogen, and 20-40% reduction for total phosphorus. The mean effluent BOD, total nitrogen and total phosphorus concentrations of the reed beds were 19 ± 10, 22 ± 9 and 6.7 ± 3.2 mg/l (mean ± SD), respectively. Thus, the general Danish effluent standards of 8 mg/l for N and 1.5 mg/l for P for sewage plants greater than 5,000 PE cannot be met by the present realised design of EHTS. The main problem observed in most systems is a poor development of horizontal hydraulic conductivity in the soil which results in surface run-off. Since the political demands for effluent quality will be more strict in the future, it is important to improve the performance of small decentral sewage treatment plants. On the basis of experiences from different types of macrophyte based and conventional low-technology wastewater treatment systems, a multi-stage system is suggested, consisting of sedimentation and sand filtration facilities followed by basins planted with emergent and submergent species of macrophytes and algal ponds.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 203-209 ◽  
Author(s):  
R. Kayser ◽  
G. Stobbe ◽  
M. Werner

At Wolfsburg for a load of 100,000 p.e., the step-feed activated sludge process for nitrogen removal is successfully in operation. Due to the high denitrification potential (BOD:TKN = 5:1) the effluent total nitrogen content can be kept below 10 mg l−1 N; furthermore by some enhanced biological phosphate removal about 80% phosphorus may be removed without any chemicals.


2001 ◽  
Vol 43 (8) ◽  
pp. 83-90 ◽  
Author(s):  
A. C. Pinto Filho ◽  
C. C. Brandão

A bench scale study was carried out in order to evaluate the applicability of dissolved air flotation (DAF) as an advanced treatment for effluents from three different domestic wastewater treatment processes, namely: (i) a tertiary activated sludge plant ; (ii) an upflow sludge blanket anaerobic reactor (UASB); and (iii) a high-rate stabilization pond.


Sign in / Sign up

Export Citation Format

Share Document