Simulation of the Elastic Modulus of Mo Alloys at Both Room and High Temperatures

2013 ◽  
Vol 785-786 ◽  
pp. 81-85 ◽  
Author(s):  
Hui Chao Cheng ◽  
Jing Lian Fan ◽  
Min Song

In this paper, the elastic modulus of a kind of carbide strengthened Mo alloy has been investigated at both room and elevated temperatures. OM image showed that the sintered Mo alloy has an average grain size of ~20 μm. SEM image of the fracture surface of the sintered Mo alloy after tensile deformation to facture showed that intergranular fracture is the dominant mechanism during deformation. A constitutive model has been developed to simulate the elastic modulus of Mo alloys at both room and elevated temperatures. It has been shown that the evolution trend of the elastic modulus predicted by the constitutive model broadly agrees with the experimental counterparts, although most predicted values are slightly higher than the experimental data. The relatively lower experimental data are due to the pores in the Mo alloy, resulted from powder metallurgy fabrication process.

2014 ◽  
Vol 937 ◽  
pp. 130-135
Author(s):  
Jing Lian Fan ◽  
Hui Chao Cheng ◽  
Min Song

In this paper, the yield strength of a kind of carbide strengthened molybdenum (Mo) alloy has been investigated at both room and elevated temperatures. OM image showed that the sintered Mo alloy has an average grain size of ~20 μm. SEM image of the fracture surface of the sintered Mo alloy after tensile deformation to facture showed that intergranular fracture is the dominant mechanism at room temperature. A constitutive model has been developed to simulate the yield strength of Mo alloys at both room and elevated temperatures. It has been shown that the evolution trend of the yield strength predicted by the constitutive model broadly agrees with the experimental counterparts. The simulation indicated that creep dominates the deformation when the temperature is above 1200 K, while dislocation overcoming the obstacles through thermal activation dominates the deformation when the temperature is below 1200 K.


The analysis of the previous results of the study on concrete stress-strain behavior at elevated temperatures has been carried out. Based on the analysis, the main reasons for strength retrogression and elastic modulus reduction of concrete have been identified. Despite a significant amount of research in this area, there is a large spread in experimental data received, both as a result of compression and tension. In addition, the deformation characteristics of concrete are insufficiently studied: the coefficient of transverse deformation, the limiting relative compression deformation corresponding to the peak load and the almost complete absence of studies of complete deformation diagrams at elevated temperatures. The two testing chambers provided creating the necessary temperature conditions for conducting studies under bending compression and tension have been developed. On the basis of the obtained experimental data of physical and mechanical characteristics of concrete at different temperatures under conditions of axial compression and tensile bending, conclusions about the nature of changes in strength and deformation characteristics have been drawn. Compression tests conducted following the method of concrete deformation complete curves provided obtaining diagrams not only at normal temperature, but also at elevated temperature. Based on the experimental results, dependences of changes in prism strength and elastic modulus as well as an equation for determining the relative deformation and stresses at elevated temperatures at all stages of concrete deterioration have been suggested.


2018 ◽  
Vol 85 (6) ◽  
Author(s):  
Yifu Chen ◽  
Guozheng Kang ◽  
Jianghong Yuan ◽  
Chao Yu

A series of stress-controlled uniaxial cyclic tension-unloading tests are discussed to investigate the ratchetting of a filled rubber at room temperature. It is shown that obvious ratchetting occurs and depends apparently on the applied stress level, stress rate, and stress history. Based on the experimental observations, a damage-coupled hyper-viscoelastic-plastic constitutive model is then developed to describe the ratchetting of the filled rubber, which consists of three branches in parallel, i.e., a hyperelastic, a viscoelastic, and a plastic one. The damage is assumed to act equally on three branches and consists of two parts, i.e., the Mullins-type damage caused by the initial tensile deformation and the accumulated damage occurred during the cyclic deformation. The developed model is validated by comparing the predicted results with the experimental data.


MRS Advances ◽  
2020 ◽  
Vol 5 (5-6) ◽  
pp. 233-243
Author(s):  
Yongliang Xiong ◽  
Kris Kuhlman ◽  
Melissa Mills ◽  
Yifeng Wang

AbstractThe US Department of Energy Office of Nuclear Energy is conducting a brine availability heater test to characterize the thermal, mechanical, hydrological and chemical response of salt at elevated temperatures. In the heater test, brines will be collected and analyzed for chemical compositions. In order to support the geochemical modeling of chemical evolutions of the brines during the heater test, we are recalibrating and validating the solubility models for the mineral constituents in salt formations up to 100°C, based on the solubility data in multiple component systems as well as simple systems from literature.In this work, we systematically compare the model-predicted values based on the various solubility models related to the constituents of salt formations, with the experimental data. As halite is the dominant constituent in salt formations, we first test the halite solubility model in the Na-Mg-Cl dominated brines. We find the existing halite solubility model systematically over-predict the solubility of halite. We recalibrate the halite model, which can reproduce halite solubilities in Na-Mg-Cl dominated brines well.As gypsum/anhydrite in salt formations controls the sulfate concentrations in associated brines, we test the gypsum solubility model in NaCl solutions up to 5.87 mol•kg–1 from 25°C to 50°C. The testing shows that the current gypsum solubility model reproduces the experimental data well when NaCl concentrations are less than 1 mol•kg–1. However, at NaCl concentrations higher than 1, the model systematically overpredicts the solubility of gypsum.In the Na+—Cl–—SO42–—CO32– system, the validation tests up to 100°C demonstrate that the model excellently reproduces the experimental data for the solution compositions equilibrated with one single phase such as halite (NaCl) or thenardite (Na2SO4), with deviations equal to, or less than, 1.5 %. The model is much less ideal in reproducing the compositions in equilibrium with the assemblages of halite + thenardite, and of halite + thermonatrite (Na2CO3•H2O), with deviations up to 31 %. The high deviations from the experimental data for the multiple assemblages in this system at elevated temperatures may be attributed to the facts that the database has the Pitzer interaction parameters for Cl–—CO32– and SO42–—CO32– only at 25°C.In the Na+—Ca2+—SO42–—HCO3– system, the validation tests also demonstrate that the model reproduces the equilibrium compositions for one single phase such as gypsum better than the assemblages of more than one phase.


2006 ◽  
Vol 505-507 ◽  
pp. 781-786
Author(s):  
Yi Che Lee ◽  
Fuh Kuo Chen

The springback behavior of an invar sheet and its perforated form were examined in the present study. The mechanical properties for invar sheet and perforated invar-sheet at elevated temperatures were first obtained from tensile tests. The test results suggest that both invar sheet and perforated invar-sheet have favorable formability at temperature higher than 200oC. An analytical model was also established to predict the springback of the invar sheet and its perforated form under bending conditions at various elevated temperatures. In order to verify the predicted results, the V-bending tests were conducted for the invar sheet at various temperatures ranging from room temperature to 300. The experimental data indicate that the springback decreases with the rise in temperature for both invar sheet and perforated invar-sheet. The good agreement between the experimental data and the predicted values confirms the validity of the proposed theoretical model as well.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 844 ◽  
Author(s):  
Wang ◽  
Shen ◽  
Zhang ◽  
Ning

The hot deformation behavior of the aerospace Ti-10-2-3 alloy was investigated by isothermal compression tests at temperatures of 740 to 820 °C and strain rates of 0.0005 to 10 s−1. The results show that the studied alloy is extremely sensitive to deformation parameters, like the temperature and strain rate. The temperature mainly affects the magnitude of flow stress at larger strains, while the strain rate not only affects the value of flow stress but also the shape of the flow curves. At low strain rates, the flow stress increases with strain, followed by a broad peak and then remains almost constant. At high strain rates, the flow curves exhibit a hardening to a sharp peak at small strains, followed by a rapid dropping to a plateau caused by dynamic softening. In order to describe such flow behavior, a constitutive model considering the effect of deformation parameters was developed as an extension of an existing constitutive model. The modified constitutive model (MC) was obtained based on the original constitutive model (OC) by introducing a new parameter to compensate for the error between the experimental data and predicted values. Compared to the original model, the developed model provides a better description of the flow behavior of Ti-10-2-3 alloy at elevated temperatures over the specified deformation domain.


Author(s):  
P. Singh ◽  
G.T. Galyon ◽  
J. Obrzut ◽  
W.A. Alpaugh

Abstract A time delayed dielectric breakdown in printed circuit boards, operating at temperatures below the epoxy resin insulation thermo-electrical limits, is reported. The safe temperature-voltage operating regime was estimated and related to the glass-rubber transition (To) of printed circuit board dielectric. The TG was measured using DSC and compared with that determined from electrical conductivity of the laminate in the glassy and rubbery state. A failure model was developed and fitted to the experimental data matching a localized thermal degradation of the dielectric and time dependency. The model is based on localized heating of an insulation resistance defect that under certain voltage bias can exceed the TG, thus, initiating thermal degradation of the resin. The model agrees well with the experimental data and indicates that the failure rate and truncation time beyond which the probability of failure becomes insignificant, decreases with increasing glass-rubber transition temperature.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 252
Author(s):  
Rongchuang Chen ◽  
Shiyang Zhang ◽  
Xianlong Liu ◽  
Fei Feng

To investigate the effect of hot working parameters on the flow behavior of 300M steel under tension, hot uniaxial tensile tests were implemented under different temperatures (950 °C, 1000 °C, 1050 °C, 1100 °C, 1150 °C) and strain rates (0.01 s−1, 0.1 s−1, 1 s−1, 10 s−1). Compared with uniaxial compression, the tensile flow stress was 29.1% higher because dynamic recrystallization softening was less sufficient in the tensile stress state. The ultimate elongation of 300M steel increased with the decrease of temperature and the increase of strain rate. To eliminate the influence of sample necking on stress-strain relationship, both the stress and the strain were calibrated using the cross-sectional area of the neck zone. A constitutive model for tensile deformation was established based on the modified Arrhenius model, in which the model parameters (n, α, Q, ln(A)) were described as a function of strain. The average deviation was 6.81 MPa (6.23%), showing good accuracy of the constitutive model.


2011 ◽  
Vol 368-373 ◽  
pp. 2483-2490
Author(s):  
Yao Ting Zhang ◽  
Yi Zheng ◽  
Hong Jian Li

A dynamic test of two unbonded fully prestressed concrete beams has been conducted. The results indicate that the natural frequency of beams increases with the prestress force, which is opposite to the analytical arguments for homogeneous and isotropic beams subject to axial force. This paper explains the change in frequencies by discussing the change in the elastic modulus. A modified formula is also proposed, and the experimental data agree well with the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document