The Effect of Alkaline Treatment on Water Absorption and Tensile Properties of Non-Woven Kenaf Polyester Composite

2013 ◽  
Vol 812 ◽  
pp. 258-262 ◽  
Author(s):  
Zakaria Mohd Nazarudin ◽  
Jamaluddin Mohd Ariff ◽  
Masitah Abu Kassim ◽  
Nur Shafiqah Othman ◽  
Othman Maizatulnisa ◽  
...  

The aim of this study is to determine the effect of alkali treatment on water absorption and tensile properties of non-woven kenaf polyester composite. Kenaf fiber mat was treated with 2, 4 and 6% of different sodium hydroxide (NaOH) concentration. The composite was fabricated using compression molding technique. It was found that treatment reduced the overall water uptake of composites. The 6% treated fibre composite was greater in moisture resistance as compared to untreated. The tensile strength of the composites was substantially improved after alkali treatment, and it was similar with the tensile modulus.

2012 ◽  
Vol 626 ◽  
pp. 449-453 ◽  
Author(s):  
Razaina Mat Taib ◽  
Nurul Mujahidah Ahmad Khairuddin ◽  
Zainal Arifin Mohd Ishak

Composites of polypropylene (PP) and kenaf fiber (KF) were immersed in water at room temperature. The fiber was treated with alkaline solution. A compatibilizer, maleic anhydride-grafted polypropylene (MAPP) was added in some composite formulations. Composite with alkali treated fibers (KFA) showed similar tensile strength but lower tensile modulus than the composite with untreated fiber, KF. Addition of MAPP was crucial to improve the tensile properties and water resistance of either PP/KF or PP/KFA composites. Alkali treatment adversely affected the water absorption behavior of PP/KF composite.


Author(s):  
Agung Efriyo Hadi ◽  
Tezara Cionita ◽  
Deni Fajar Fitriyana ◽  
Januar Parlaungan Siregar ◽  
Ahmed Nurye Oumer ◽  
...  

Incorporating natural fibre as reinforcement in the polymer matrix has shown a negative effect since the natural fibre is hydrophilic. The natural fibre easily absorbs water which causes an effect on the mechanical properties of the composites. The objective of this paper is to investigate the water absorption behaviour of hybrid jute-roselle woven fibre reinforced unsaturated polyester composite and the effect of water absorption in terms of tensile strength and tensile modulus. The effect of hybrid composite on the thickness swelling will be tested. The fabrication method used in this study is the hand lay-up technique to fabricate 2-layer and 3-layer composites with layering sequences of woven jute (J)/roselle (Ro) fibre. The results of the study showed that pure roselle fibres for 2 and 3-layer composites have the highest water absorption behaviour 3.86% and 5.51%, respectively, in 28 days) as well as thickness swelling effect, whereas hybrid J-Ro and J-J-Ro composites showed the least water absorption (2.65% and 3.76%, respectively) in 28 days) in both the tests. The hybridisation between jute and roselle fibres reduced water absorption behaviour and improved the fibres dimensional stability. The entire composites showed a decreasing trend for both tensile strength and tensile modulus strength after five weeks of water immersion. Jute fibre composite hybridised with roselle fibre can be used to reduce the total reduction of both tensile strength and tensile modulus throughout the whole immersion period. Moreover, the tensile testing showed that jute fibre composite hybridised with roselle fibre have produced the strongest composite with the highest tensile and modulus strength compared to other types of composites. The hybridisation of diverse fibre reinforcements aids in minimising the composite water absorption and thickness swelling, hence reducing the effect of tensile characteristics.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Ming Yee Tan ◽  
Hoo Tien Nicholas Kuan ◽  
Meng Chuen Lee

Effect of alkali treatment on ground coffee waste/oxobiodegradable HDPE (GCW/oxo-HDPE) composites was evaluated using 5%, 10%, 15%, and 20% volume fraction of GCW. The composites were characterized using structural (Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM)), thermal (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)), mechanical (tensile and impact test) properties, and water absorption. FTIR spectrum indicated the eradication of lipids, hemicellulose, lignin, and impurities after the treatments lead to an improvement of the filler/matrix interface adhesion. This is confirmed by SEM results. Degree of crystallinity index was increased by 5% after the treatment. Thermal stability for both untreated and treated GCW composites was alike. Optimum tensile result was achieved when using 10% volume fraction with enhancement of 25% for tensile strength and 24% for tensile modulus compared to untreated composite. Specific tensile strength and modulus had improved as the composite has lower density. The highest impact properties were achieved when using 15% volume fraction that lead to an improvement of 6%. Treated GCW composites show better water resistance with 57% improvement compared to the untreated ones. This lightweight and ecofriendly biocomposite has the potential in packaging, internal automotive parts, lightweight furniture, and other composite engineering applications.


2016 ◽  
Vol 846 ◽  
pp. 665-672
Author(s):  
Yoon Yee Then ◽  
Ibrahim Nor Azowa ◽  
Norhazlin Zainuddin ◽  
Buong Woei Chieng ◽  
Chern Chiet Eng ◽  
...  

The issue related to relatively poor interfacial adhesion between hydrophilic natural fiber and hydrophobic thermoplastic remain as an obstacle in natural fiber/thermoplastic biocomposites. Consequently, surface treatment of fiber is of important to impart adhesion. The present work used consecutive superheated steam-alkali treatment to treat the oil palm mesocarp fiber (OPMF) prior to biocomposite fabrication. The biocomposites made up of 70 wt% treated OPMF and 30 wt% poly (butylene succinate) (PBS) were prepared by melt blending technique in a Brabender internal mixer followed by hot-press moulding into 1 mm sheets. A silane coupling agent of (3-aminopropyl) trimethoxysilane (APTMS) was also added to the biocomposite during the process of compounding to promote interfacial adhesion and enhance the properties of biocomposites. The results showed that the biocomposite containing 2 wt% APTMS showed maximum enhancement in tensile strength (89%), tensile modulus (812%) and elongation at break (52%) in comparison to that of untreated OPMF/PBS biocomposite. The SEM observation of the tensile fracture surface revealed that APTMS improved the interfacial adhesion between treated OPMF and PBS. It can be deduced that the presence of APTMS can improve the adhesion between hydrophilic fiber and hydrophobic thermoplastic, and thus increased the tensile properties of the biocomposite.


2014 ◽  
Vol 660 ◽  
pp. 285-289 ◽  
Author(s):  
Mohd Yussni Hashim ◽  
Mohd Nazrul Roslan ◽  
Shahruddin Mahzan ◽  
Mohd Zin ◽  
Saparudin Ariffin

The increase of environmental issues awareness has accelerated the utilization of renewable resources like plant fiber to be used as reinforced material in polymer composite. However, there are significant problems of compatibility between the fiber and the matrix due to weakness in the interfacial adhesion of the natural fiber with the synthetic matrices. One of the solutions to overcome this problem is using chemical modification like alkali treatment. In this study, the impact of alkali treatment conditions on short randomly oriented kenaf fiber reinforced polyester matrix composite tensile strength was investigated. The experimental design setting was based on 2 level factorial experiments. Two parameters were selected during alkali treatment process which are kenaf fiber immersion duration (at 30 minute and 480 minute) and alkali solution temperature (at 40°C and 80°C). Alkali concentration was fixed at 2% (w/v) and the kenaf polyester volume fraction ratio was 10:90. The composite specimens were tested to determine the tensile properties according to ASTM D638-10 Type I. JOEL scanning electron microscopy (SEM) was used to study the microstructure of the material. The result showed that alkali treatment conditions setting do have the impact on tensile strength of short randomly oriented kenaf polyester composite. The interaction factors between immersion time and temperature was found to have prominent factors to the tensile strength of composite followed by the immersion time factor.


2013 ◽  
Vol 594-595 ◽  
pp. 644-647
Author(s):  
Abdul Rahman Rozyanty ◽  
M.Y. Nur Firdaus ◽  
Luqman Musa

The biocomposites were prepared by using kenaf bast fiber mat as reinforcing materials at different percentage. The kenaf bast fiber was treated with alkaline at different sodium hydroxide (NaOH) percentage. Composites which were made from treated alkaline kenaf treated bast fiber showed better mechanical properties (tensile) than those of the unmodified. Scanning electron microscope analysis showed the evidence of the enhancement of the compatibility between kenaf bast fiber and the matrix. The percentage of kenaf fiber in composites also plays a crucial role in determining the composite properties.


2014 ◽  
Vol 1024 ◽  
pp. 171-174 ◽  
Author(s):  
Razaina Mat Taib ◽  
Dody Ariawan ◽  
Zainal Arifin Mohd Ishak

Non-woven kenaf fiber mats were prepared from untreated and alkali treated fibers by using a carding machine followed by needle punching. The alkali treatment was carried out by immersing the fiber mats in 6% NaOH solution for 0, 1, 2, 3, 4, and 5 h at room temperature. The untreated and alkali treated fiber mats were impregnated with unsaturated polyester resin via a resin transfer molding technique to form composites. Maximum improvements of flexural strength and flexural modulus of the composites were observed when the fiber mat was alkali treated for 3 h. The improved of both properties can be attributed to better fiber-matrix adhesion between the alkali treated kenaf fiber and the unsaturated polyester matrix most probably via mechanical interlocking. Water absorption tests were conducted by immersing the composite samples in distilled water at room temperature. The water absorption patterns of all the composites were found to follow Fickian behavior. The tendency of the composites to absorb water decreased when the alkali treated fiber mats were used.


2017 ◽  
Vol 882 ◽  
pp. 89-100 ◽  
Author(s):  
Omid Nabinejad ◽  
Sujan Debnath ◽  
Teh J. Ying ◽  
Willey Y.H. Liew ◽  
Ian J. Davies

The effect of alkali treatment and nanoclay addition on the mechanical properties and water absorption behavior of rice husk particle (RHP) reinforced unsaturated polyester (UP) composites was investigated. Thermogravimetric analysis (TGA) indicated that the alkali treatment removed most of the hemicellulose and impurities from the RHP with the tensile strength, tensile modulus, flexural strength and flexural modulus of the resulting composites being improved by alkali treatment. The results indicated that the 5% sodium hydroxide concentration had the optimum performance on mechanical strength and water absorption resistance. Furthermore, the influence of nanoclay addition (1, 3 and 5 wt%) on the properties of optimum alkali treated RHP-UP composites was investigated with the lowest content (1 wt%) of nanoclay showing the highest mechanical performance. However, further addition of nanoclay improved the moisture absorption resistance of the composites. Good interface bonding between the filler and matrix was observed from scanning electron micrographs for the optimum RHP alkali treated and nanoclay dispersed RHP-UP composites.


Sign in / Sign up

Export Citation Format

Share Document