A New Punch Profile Design for Orbital Forging of a Bevel Gear Part

2009 ◽  
Vol 83-86 ◽  
pp. 113-124
Author(s):  
Jinn Jong Sheu ◽  
M.S. He

The difficulty in forging of bevel gear with an outside diameter larger than 75mm is due to the high forming load requirement. In this paper, a new intuitive method for the punch and preform design of the bevel gear warm orbital forging is proposed to lower the forging load and improve the die filling. The geometry of the forged bevel gear are divided into characteristic features and mapped to the main dimensions of the preform design. The exact dimensions of the preform are determined utilizing constraints of the volume constancy and the section centroid balance. The surface of punch tip is designed using the section profile described by a Bezier curve with five control points which are related to the preform and the forged part geometry simultaneously. The forming process was analyzed via the FEM simulation. The die stress was also calculated to prevent die failure and improve tool life. A PXW-200 orbital forging press was adopted for the experimental tests of the proposed designs. The unfilled area at the teeth faces were examined via the laser scanner. The experimental results of the maximum unfilled distances were varied from 0.3 mm to 0.8mm depending on the different punch tip profile design. The predicted tooth profiles were in good agreement with the experimental measurements.

Author(s):  
René Selbmann ◽  
Markus Baumann ◽  
Mateus Dobecki ◽  
Markus Bergmann ◽  
Verena Kräusel ◽  
...  

AbstractThe residual stress distribution in extruded components and wires after a conventional forming process is frequently unfavourable for subsequent processes, such as bending operations. High tensile residual stresses typically occur near the surface of the wire and thus limit further processability of the material. Additional heat treatment operations or shot peening are often inserted to influence the residual stress distribution in the material after conventional manufacturing. This is time and energy consuming. The research presented in this paper contains an approach to influence the residual stress distribution by modifying the forming process for wire-like applications. The aim of this process is to lower the resulting tensile stress levels near the surface or even to generate compressive stresses. To achieve these residual compressive stresses, special forming elements are integrated in the dies. These modifications in the forming zone have a significant influence on process properties, such as degree of deformation and deformation direction, but typically have no influence on the diameter of the product geometry. In the present paper, the theoretical approach is described, as well as the model set-up, the FE-simulation and the results of the experimental tests. The characterization of the residual stress states in the specimen was carried out by X-ray diffraction using the sin2Ψ method.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2125 ◽  
Author(s):  
Janusz Tomczak ◽  
Zbigniew Pater ◽  
Tomasz Bulzak

This paper presents selected numerical and experimental results of a skew rolling process for producing balls using helical tools. The study investigates the effect of the billet’s initial temperature on the quality of produced balls and the rolling process itself. In addition, the effect of billet diameter on the quality of produced balls is investigated. Experimental tests were performed using a helical rolling mill available at the Lublin University of Technology. The experiments consisted of rolling 40 mm diameter balls with the use of two helical tools. To determine optimal rolling parameters ensuring the highest quality of produced balls, numerical modelling was performed using the finite element method in the Forge software. The numerical analysis involved the determination of metal flow kinematics, temperature and damage criterion distributions, as well as the measurement of variations in the force parameters. The results demonstrate that the highest quality balls are produced from billet preheated to approximately 1000 °C.


2002 ◽  
Vol 124 (2) ◽  
pp. 379-388 ◽  
Author(s):  
Jin Cheng ◽  
Y. Lawrence Yao

Laser forming of steel is a hot forming process with high heating and cooling rate, during which strain hardening, dynamic recrystallization, and phase transformation take place. Numerical models considering strain rate and temperature effects only usually give unsatisfactory results when applied to multiscan laser forming operations. This is mainly due to the inadequate constitutive models employed to describe the hot flow behavior. In this work, this limitation is overcome by considering the effects of microstructure change on the flow stress in laser forming processes of low carbon steel. The incorporation of such flow stress models with thermal mechanical FEM simulation increases numerical model accuracy in predicting geometry change and mechanical properties.


2011 ◽  
Vol 381 ◽  
pp. 72-75
Author(s):  
Bin Li

This paper investigates the interfacial slip between the forming tool and workpiece in a relatively new metal forming process, cross-wedge rolling. Based on the finite elements method, three-dimensional mechanical model of cross wedge rolling process has been developed. Examples of numerical simulation for strain, stress distributions and rolling load components have been included. The main advantages of the finite element method are: the capability of obtaining detailed solutions of the mechanics in a deforming body, namely, stresses, shapes, strains or contact pressure distributions; and the computer codes, can be used for a large variety of problems by simply changing the input data.


2011 ◽  
Vol 491 ◽  
pp. 145-150 ◽  
Author(s):  
Marcelo Martins ◽  
Sérgio Tonini Button ◽  
José Divo Bressan

Hot extrusion is a metal forming process with a huge importance in the manufacturing of long metallic bars with complex shapes, and because of this, academics and industries are especially interested in better understanding how metal flows during the process. In order to have a reliable computational tool that can help to solve and to obtain material internal flow, experimental tests and numerical simulation with the finite element method were carried out to obtain results of the velocity fields generated in hot direct extrusion of aluminum billets (aluminum alloy 6351). The experimental results of the velocity field will be used to validate a computational code based on the finite volume method.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 374
Author(s):  
Jaroslaw Jan Jasinski ◽  
Michal Tagowski

Riveted joints are a common way to connect elements and subassemblies in the automotive industry. In the assembly process, tubular rivets are loaded axially with ca. 3 kN forces, and these loads can cause cracks and delamination in the rivet material. Such effects at the quality control stage disqualify the product in further assembly process. The article presents an analysis of the fracture mechanism of E215 low-carbon steel tubular rivets used to join modules of driver and passenger safety systems (airbags) in vehicles. Finite element method (FEM) simulation and material testing were used to verify the stresses and analysis of the rivet fracture. Numerical tests determined the state of stress during rivet forming using the FEM-EA method based on the explicit integration of central differences. Light microscopy (LM), scanning electron microscopy (SEM) and chemical composition analysis (SEM-EDS) were performed to investigate the microstructure of the rivet material and to analyze the cracks. Results showed that the cause of rivet cracking is the accumulation and exceeding of critical tensile stresses in the rivet flange during the tube processing and the final riveting (forming) process. Moreover, it was discovered that rivet fracture is largely caused by structural defects (tertiary cementite Fe,Mn3CIII along the boundaries of prior austenite grains) in the material resulting from the incorrectly selected parameters of the final heat treatment of the prefabricate (tube) from which the rivet was produced. The FEM simulation of the riveting and structural characterization results correlated well, so the rivet forming process and fracture mechanism could be fully investigated.


2018 ◽  
Vol 185 ◽  
pp. 00025
Author(s):  
Ing-Kiat Tiong ◽  
Un-Chin Chai ◽  
Gow-Yi Tzou

An optimization research is performed on the related forming parameters of wire rod drawing through a rotating die under Coulomb friction. The optimization research is conducted through finite element method (FEM) simulation combined with Taguchi method. There are two drawing characteristic optimizations have been carried out. They are the optimizations with drawing force and die stress. The forming parameters considered in this study are half die angle, frictional coefficient, die fillet, and rotating angular velocity of the rotating die. The same procedure is carried out in both optimizations. The geometrical models of the wire rod, top die and rotating die are constructed firstly in SolidWorks and imported into the FEM simulation software named DEFORM 3D. With the aid of Taguchi method, the simulation experiments are carried out. The results such as drawing force, die stress, and the corresponding signal-to-noise (S/N) ratio are obtained and compared. The influence rank of the forming parameters and the optimal combination of parameters are obtained through the response table for both optimizations. The results such as effective stress, effective strain, velocity field, drawing force, and die stress are studied. The results show that the minimizations of drawing force and die stress are successfully achieved.


2013 ◽  
Vol 554-557 ◽  
pp. 423-432 ◽  
Author(s):  
Patrick Böhler ◽  
Frank Härtel ◽  
Peter Middendorf

In several fields of engineering the use of carbon fibre reinforced material (CFRP) is increasing. Minimized weight due to CFRPs could lead to lower consumption of raw materials especially in the automotive area. The goal within the research project TC² is the decrease of costs and production time for composite materials. To achieve better performance to weight ratio and to get acceptable production conditions the draping of dry unidirectional textiles and a following RTM process is investigated. Due to the high degree of complexity of automotive structures the forming process is challenging. Gapping in the textile could appear at corners as well as wrinkling or flexion of the fibres. To be able to define the amount and direction of layers or patches it is necessary to know the limits of forming for unidirectional material and to be able to predict the behaviour of the textile during the forming process. For the definition of the process limits several draping strategies are performed on different corner blend geometries. The goal of that work is to define the critical gradient of the flange to get first failures such as wrinkling or gapping. It is also important to understand the influence of different draping strategies. Parallel to the experimental tests a mesoscopic simulation method using an approach with roving and sewing thread is developed and presented. It is able to predict the material behaviour in critical areas (gapping, wrinkling). Different Young’s moduli and failure criteria can be implemented for the two main directions as well as for the bending of the textile. A validation with the experimental results is performed with the aim to enable the prediction of the textile behaviour using simulation methods.


Sign in / Sign up

Export Citation Format

Share Document