The Property of Waterborne UV-Curable Polyurethane Based on Alkali Lignin of Wheat Straw

2013 ◽  
Vol 834-836 ◽  
pp. 199-202 ◽  
Author(s):  
Ji Lei Chao ◽  
Fu Qiang Chu ◽  
Chang Li Xu ◽  
Hui Wang ◽  
Yu Xin Liu

To improve the added value of lignin, the modified alkali lignin of wheat straw was used to prepare waterborne UV-curable polyurethane. The purpose of this paper is to discuss the properties of the cured films made from the above lignin-based polyurethane. The mechanical and optical properties of the cured films were investigated. Results showed that the tensile storage modulus, tensile loss modulus, and tensile loss factor of the cured film were influenced by the addition of the lignin, which indicated that proper dosage of the lignin could change the micro-phase separation structure and improve the mechanical properties of the product. The addition of the lignin also influenced the gloss and light transmittance of the cured film. On the whole, the lignin-based polyurethane exhibits good mechanical and optical performance if proper proportion of the lignin was added to the product. The study was beneficial for utilizing the lignin in high value products.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tindibale L. Edward ◽  
M. S. K. Kirui ◽  
Josiah O. Omolo ◽  
Richard G. Ngumbu ◽  
Peter M. Odhiambo

This study investigated the effects of ultraviolet-A (UV-A) and ultraviolet-C (UV-C) light on the mechanical properties in oyster mushrooms during the growth. Experiments were carried out with irradiation of the mushrooms with UV-A (365 nm) and UV-C (254 nm) light during growth. The exposure time ranged from 10 minutes to 60 minutes at intervals of 10 minutes and irradiation was done for three days. The samples for experimental studies were cut into cylindrical shapes of diameter 12.50 mm and thickness 3.00 mm. The storage modulus, loss modulus, and loss factor of the irradiated samples and control samples were determined for both UV bands and there was a significant difference between the storage modulus, loss modulus, and loss factor of the irradiated samples by both UV bands with reference to the control sample, P<0.05. UV-C light irradiated samples had higher loss modulus and loss factor but low storage modulus as temperature increased from 35 to 100°C with respect to the control sample while UV-A light irradiated samples had lower loss modulus, low loss factor, and higher storage modulus than UV-C irradiated samples.


2006 ◽  
Vol 21 (8) ◽  
pp. 2045-2051 ◽  
Author(s):  
Bedabibhas Mohanty ◽  
Kalpana S. Katti ◽  
Dinesh R. Katti ◽  
Devendra Verma

Nacre, the shiny inner layer of mollusk shells is a model biomimetic nanocomposite system. Its exceptional mechanical properties have been the inspiration for materials scientists for several decades. Nacre exhibits a layered brick and mortar structure. It is composed of 95% inorganic (aragonitic CaCO3) phase and 5% organic (mainly proteins and polysaccharides) phase that are arranged in interlocked brick and mortar architecture with the mineral as bricks and organics as the mortar. In the current work, we describe the dynamic nanomechanical behavior of nacre using dynamic nanoindentation (nano-DMA) experiments. Two sets of loads were applied to obtain the dynamic response from varying depths in nacre. These tests were performed at three different frequencies (25, 50, and 100 Hz) to study the effect of frequency on the dynamic properties of nacre. The loss modulus (E″) and the loss factor (tan δ) were measured. Both of these parameters were observed to increase with increase in depth. Significant increase in tan δ was observed with the increase in frequency. Photoacoustic Fourier transform infrared spectroscopic studies on nacre indicate the presence of water in nacre. This water may be present at nanograin interfaces in nacre platelets, at organic–inorganic interfaces, and also in the organic phase in nacre. We believe that water is one of the significant contributors to the viscoelasticity of nacre. Our results indicate that the aragonite platelets in nacre may also contribute to viscoelasticity.


2021 ◽  
Author(s):  
Barbara Maria Ribeiro Guimarães ◽  
Mário Vanoli Scatolino ◽  
Maria Alice Martins ◽  
Saulo Rocha Ferreira ◽  
Lourival Marin Mendes ◽  
...  

Abstract The growing demand for products with lower environmental impact and the extensive applicability of cellulose nanofibrils (CNFs) have received attention in several fields of knowledge due to their attractive properties. In this study, bio-based films/nanopapers were produced with CNFs from banana tree pseudostem (BTPT) wastes and Eucalyptus kraft cellulose (EKC) and were evaluated by their properties, such as mechanical strength, biodegradability and light transmittance. The CNFs were produced by mechanical fibrillation (after 20 and 40 passages) from suspensions of BTPT (alkaline pre-treated) and EKC. Films/nanopapers were produced by casting from both suspensions with concentrations of 2% (based in dry mass of CNF). The BTPT films/nanopapers showed greater mechanical properties, with Young’s modulus and tensile strength around 2.42 GPa and 51 MPa (after 40 passages), respectively. On the other hand, the EKC samples showed lower disintegration in water after 24 h and biodegradability. The increase in the number of fibrillation cycles produced more transparent films/nanopapers and caused a significant reduction of water absorption for both raw materials. The permeability was similar for the films/nanopapers from BTPT and EKC. This study indicated that attractive mechanical properties and biodegradability could be achieved by bio-based nanomaterials, with potential for being applied as emulsifying agents and special membranes, enabling more efficient utilization of agricultural wastes.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 618
Author(s):  
Layla Shafei ◽  
Puja Adhikari ◽  
Wai-Yim Ching

Clay mineral materials have attracted attention due to their many properties and applications. The applications of clay minerals are closely linked to their structure and composition. In this paper, we studied the electronic structure properties of kaolinite, muscovite, and montmorillonite crystals, which are classified as clay minerals, by using DFT-based ab initio packages VASP and the OLCAO. The aim of this work is to have a deep understanding of clay mineral materials, including electronic structure, bond strength, mechanical properties, and optical properties. It is worth mentioning that understanding these properties may help continually result in new and innovative clay products in several applications, such as in pharmaceutical applications using kaolinite for their potential in cancer treatment, muscovite used as insulators in electrical appliances, and engineering applications that use montmorillonite as a sealant. In addition, our results show that the role played by hydrogen bonds in O-H bonds has an impact on the hydration in these crystals. Based on calculated total bond order density, it is concluded that kaolinite is slightly more cohesive than montmorillonite, which is consistent with the calculated mechanical properties.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2359
Author(s):  
Harmaen Ahmad Saffian ◽  
Masayuki Yamaguchi ◽  
Hidayah Ariffin ◽  
Khalina Abdan ◽  
Nur Kartinee Kassim ◽  
...  

In this study, Kraft lignin was esterified with phthalic anhydride and was served as reinforcing filler for poly(butylene succinate) (PBS). Composites with different ratios of PBS, lignin (L), modified lignin (ML) and kenaf core fibers (KCF) were fabricated using a compounding method. The fabricated PBS composites and its counterparts were tested for thermal, physical and mechanical properties. Weight percent gain of 4.5% after lignin modification and the FTIR spectra has confirmed the occurrence of an esterification reaction. Better thermo-mechanical properties were observed in the PBS composites reinforced with modified lignin and KCF, as higher storage modulus and loss modulus were recorded using dynamic mechanical analysis. The density of the composites fabricated ranged from 1.26 to 1.43 g/cm3. Water absorption of the composites with the addition of modified lignin is higher than that of composites with unmodified lignin. Pure PBS exhibited the highest tensile strength of 18.62 MPa. Incorporation of lignin and KCF into PBS resulted in different extents of reduction in tensile strength (15.78 to 18.60 MPa). However, PBS composite reinforced with modified lignin exhibited better tensile and flexural strength compared to its unmodified lignin counterpart. PBS composite reinforced with 30 wt% ML and 20 wt% KCF had the highest Izod impact, as fibers could diverge the cracking propagation of the matrix. The thermal conductivity value of the composites ranged from 0.0903 to 0.0983 W/mK, showing great potential as a heat insulator.


2020 ◽  
Vol 90 (21-22) ◽  
pp. 2399-2410 ◽  
Author(s):  
Shahbaj Kabir ◽  
Hyelim Kim ◽  
Sunhee Lee

This study has investigated the physical properties of 3D-printable shape memory thermoplastic polyurethane (SMTPU) filament and its 3D-printed sinusoidal pattern obtained by fused deposition modeling (FDM) technology. To investigate 3D filaments, thermoplastic polyurethane (TPU) and SMTPU filament were examined by conducting infrared spectroscopy, x-ray diffraction (XRD), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and a tensile test. Then, to examine the 3D-printed sinusoidal samples, a sinusoidal pattern was developed and 3D-printed. Those samples went through a three-step heating process: (a) untreated state; (b) 5 min heating at 70°C, cooling for 30 min at room temperature; and (c) a repeat of step 2. The results obtained by the three different heating processes of the 3D-printed sinusoidal samples were examined by XRD, DMTA, DSC and the tensile test to obtain the effect of heating or annealing on the structural and mechanical properties. The results show significant changes in structure, crystallinity and thermal and mechanical properties of SMTPU 3D-printed samples due to the heating steps. XRD showed the increase in crystallinity with heating. In DMTA, storage modulus, loss modulus and the tan σ peak position also changed for various heating steps. The DSC result showed that the Tg for different steps of the SMTPU 3D-printed sample remained almost the same at around 51°C. The tensile property of the TPU 3D-printed sinusoidal sample decreased in terms of both load and elongation with increased heating processes, while for the SMTPU 3D-printed sinusoidal sample, the load decreased but elongation increased about 2.5 times.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 329
Author(s):  
Tan Yi ◽  
Minghui Qi ◽  
Qi Mo ◽  
Lijie Huang ◽  
Hanyu Zhao ◽  
...  

Composite films of polybutylene adipate terephthalate (PBAT) were prepared by adding thermoplastic starch (TPS) (TPS/PBAT) and nano-zinc oxide (nano-ZnO) (TPS/PBAT/nano-ZnO). The changes of surface morphology, thermal properties, crystal types and functional groups of starch during plasticization were analyzed by scanning electron microscopy, synchronous thermal analysis, X-ray diffraction, infrared spectrometry, mechanical property tests, and contact Angle and transmittance tests. The relationship between the addition of TPS and the tensile strength, transmittance, contact angle, water absorption, and water vapor barrier of the composite film, and the influence of nano-ZnO on the mechanical properties and contact angle of the 10% TPS/PBAT composite film. Experimental results show that, after plasticizing, the crystalline form of starch changed from A-type to V-type, the functional group changed and the lipophilicity increased; the increase of TPS content, the light transmittance and mechanical properties of the composite membrane decreased, while the water vapor transmittance and water absorption increased. The mechanical properties of the composite can be significantly improved by adding nano-ZnO at a lower concentration (optimum content is 1 wt%).


Author(s):  
Philipp Knospe ◽  
Patrick Böhm ◽  
Jochen Gutmann ◽  
Michael Dornbusch

AbstractNowadays, coating materials must meet high demands in terms of mechanical, chemical and optical properties in all areas of application. Amongst others, amines and isocyanates are used as crosslinking components for curing reactions, meeting the highly demanding properties of the coatings industry. In this work, a new crosslinking reaction for coatings based on oxazoline chemistry is investigated with the objective to overcome disadvantages of established systems and fulfill the need for sustainable coating compounds. The oxazoline-group containing resin, synthesized from commercially available substances, undergoes cationic self-crosslinking polymerization to build up a network based on urethane and amide moieties. NMR-, IR- and ES-mass spectroscopy are suitable techniques to characterize the synthesized oxazoline monomers, which are linked to polyisocyanates and polymerized afterwards via self-polymerization. The progress of crosslinking is followed by changes in IR spectra and by rheological measurements to calculate time dependent values for storage and loss modulus. The glass transition temperature of the resulting coating is determined, too. Furthermore, sol–gel-analysis is performed to determine the degree of crosslinking. After application on steel and aluminium panels, application tests are performed. In addition to excellent adhesion to the substrate, the polymer network shows promising mechanical properties and with that it could represent a new technology for the coatings industry.


Sign in / Sign up

Export Citation Format

Share Document