Analysis and Improvement on Acoustic Performance of Muffler with the Consideration of Temperature and Flow Velocity

2014 ◽  
Vol 875-877 ◽  
pp. 1143-1147
Author(s):  
Yi Xiang Hu ◽  
Shun Ming Li ◽  
Qing Liu

Aiming for the acoustic performance of expanded-muffler, the acoustic fields, flow field, temperature field and flow regenerated noise inside the expanded-muffler were studied. Furthermore, with the consideration of temperature and flow velocity, the influence of temperature and flow velocity on acoustic performance was obtained. Based on the research, the acoustic performance of an exhaust muffler was studied. By adjusting the structural parameters, without affecting the engine output power, the insertion loss of muffler has average increased by 5.1 dB (A).

Author(s):  
Yi Han ◽  
Feng Liu ◽  
Xin Ran

In the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.


2020 ◽  
Vol 11 (2) ◽  
pp. 29
Author(s):  
Haojie Xue ◽  
Di Tan ◽  
Shuaishuai Liu ◽  
Meng Yuan ◽  
Chunming Zhao

In this paper, a 15 KW in-wheel motor (IWM) is taken as the research object, and the coupling factors among the electromagnetic field, temperature field and flow field are analyzed, and the strong and weak coupling factors between the three fields are clarified, and by identifying the strong and weak coupling factors between the three fields, a three-field coupling analysis model for IWM with appropriate complexity is established, and the validity of the model is verified. In a certain driving condition, the electromagnetic field, temperature field and flow field characteristics of IWM are analyzed with the multi-field coupling model. The result shows that, after the IWM runs 8440 s under driving conditions, in this paper, the IWM electromagnetic torque of the rated working condition is 134.2 Nm, and IWM the electromagnetic torque of the peak working condition is 451.36 Nm, and the power requirement of the motor can be guaranteed. The highest temperature of the IWM is 150 °C, which does not exceed the insulation grade requirements of the motor (155 °C), the highest temperature of the permanent magnet (PM) is 65.6 °C, and it does not exceed the highest operating temperature of the PM, and ensures the accurate calculation of components loss and the temperature of the motor. It can be found, through research, that the electromagnetic torque difference between unidirectional coupling and bidirectional coupling is 3.2%, the maximum temperature difference is 7.98% in the three-field coupling analysis of IWM under rated working conditions. Therefore, it is necessary to consider the influence of coupling factors on the properties of motor materials when analyzing the electromagnetic field, temperature field and flow field of IWM; it also provides some reference value for the simulation analysis of IWM in the future.


2012 ◽  
Vol 591-593 ◽  
pp. 908-911
Author(s):  
Rong Wang ◽  
Guo Bin Shen ◽  
De Qiang Wei

A finite element model was established to describe the flow field and temperature field during the surface modification by electron beam in this paper. The driving forces of molten pool were considered in the mode. The flow of liquid metal was different between the inside and outside of the beam spot; the direction of the flow was along the surface to the specimen thickness. When the liquid metal was in the bottom of the pool, it flowed along the bottom to the pool edge. The largest flow velocity was 0.28m/s in the center of the beam spot, the minimum flow velocity was 0.11 m/s in the bottom of molten pool. The temperature of sample is uniform distribution, the temperature distribution show a gradient distribution in cross section.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 561 ◽  
Author(s):  
Fei Xing ◽  
Shuguo Zheng ◽  
Zonghui Liu ◽  
Miaoyong Zhu

In order to study the flow field, temperature field, and inclusion removal in a new induction heating tundish with bent channels, a three-dimensional (3D) transient mathematical model is established. The effects of both the channel radius and heating power on the multi-physical field and inclusion removal in the bent channels’ induction heating tundish are investigated. The results show that the tundish with the channel radius of 3 m shows better flow characteristics than those with the channel radii of 4 m and 2 m. With the increase of channel length, the heating efficiency increases at first, and then decreases, while the radius of 3 m is the best one for heating efficiency. After all the inclusions are placed into the tundish, the radii of 3 m and 2 m show good efficiency regarding inclusion removal, while it is poor when the radius is 4 m. Therefore, 3 m is the optimal radius of the channel in this work. Under the optimal channel radius, the heating power of 800 kW seems better than those of 600 kW and 1000 kW on flow characteristics control in the tundish. The temperature in the receiving chamber rises gradually and distributes quite uniformly with the increasing heating power, and the removal rate of inclusions increases with the increasing heating power.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7349
Author(s):  
Francesco D’Amato ◽  
Silvia Viciani ◽  
Alessio Montori ◽  
Marco Barucci ◽  
Carmen Morreale ◽  
...  

In order to assess the limits and applicability of Pitot tubes for the measurement of flow velocity in narrow ducts, e.g., biomass burning plants, an optical, dual function device was implemented. This sensor, based on spectroscopic techniques, targets a trace gas, injected inside the stack either in bursts, or continuously, so performing transit time or dilution measurements. A comparison of the two optical techniques with respect to Pitot readings was carried out in different flow conditions (speed, temperature, gas composition). The results of the two optical measurements are in agreement with each other and fit quite well the theoretical simulation of the flow field, while the results of the Pitot measurements show a remarkable dependence on position and inclination of the Pitot tube with respect to the duct axis. The implications for the metrology of small combustors’ emissions are outlined.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Junfeng Sun ◽  
Meihong Liu ◽  
Zhen Xu ◽  
Taohong Liao ◽  
Xiangping Hu ◽  
...  

A new type of cylindrical gas film seal (CGFS) with a flexible support is proposed according to the working characteristics of the fluid dynamic seal in high-rotational-speed fluid machinery, such as aero-engines and centrifuges. Compared with the CGFS without a flexible support, the CGFS with flexible support presents stronger radial floating characteristics since it absorbs vibration and reduces thermal deformation of the rotor system. Combined with the structural characteristics of a film seal, an analytical model of CGFS with a flexible wave foil is established. Based on the fluid-structure coupling analysis method, the three-dimensional flow field of a straight-groove CGFS model is simulated to study the effects of operating and structural parameters on the steady-state characteristics and the effects of gas film thickness, eccentricity, and the number of wave foils on the equivalent stress of the flexible support. Simulation results show that the film stiffness increases significantly when the depth of groove increases. When the gas film thickness increases, the average equivalent stress of the flexible support first decreases and then stabilizes. Furthermore, the number of wave foils affects the average foils thickness. Therefore, when selecting the number of wave foils, the support stiffness and buffer capacity should be considered simultaneously.


Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 79
Author(s):  
Yuekan Zhang ◽  
Jiangbo Ge ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Junru Yang ◽  
...  

In view of the difficulty of traditional hydrocyclones to meet the requirements of fine classification, a double-overflow three-product (internal overflow, external overflow and underflow) hydrocyclone was designed in this study. Numerical simulation and experimental research methods were used to investigate the effects of double-overflow flow field characteristics and structural parameters (i.e., internal vortex finder diameter and insertion depth) on separation performance. The research results showed that the larger the diameter of the internal vortex finder, the greater the overflow yield and the larger the cut size. The finest internal overflow product can be obtained when the internal vortex finder is 30 mm longer than the external vortex finder. The separation efficiency is highest when the internal vortex finder is 30 mm shorter than the external vortex finder.


Sign in / Sign up

Export Citation Format

Share Document