scholarly journals Spectroscopic Techniques versus Pitot Tube for the Measurement of Flow Velocity in Narrow Ducts

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7349
Author(s):  
Francesco D’Amato ◽  
Silvia Viciani ◽  
Alessio Montori ◽  
Marco Barucci ◽  
Carmen Morreale ◽  
...  

In order to assess the limits and applicability of Pitot tubes for the measurement of flow velocity in narrow ducts, e.g., biomass burning plants, an optical, dual function device was implemented. This sensor, based on spectroscopic techniques, targets a trace gas, injected inside the stack either in bursts, or continuously, so performing transit time or dilution measurements. A comparison of the two optical techniques with respect to Pitot readings was carried out in different flow conditions (speed, temperature, gas composition). The results of the two optical measurements are in agreement with each other and fit quite well the theoretical simulation of the flow field, while the results of the Pitot measurements show a remarkable dependence on position and inclination of the Pitot tube with respect to the duct axis. The implications for the metrology of small combustors’ emissions are outlined.

1968 ◽  
Vol 90 (1) ◽  
pp. 45-50
Author(s):  
R. G. Fenton

The upper bound of the average ram pressure, based on an assumed radial flow velocity field, is derived for plane strain extrusion. Ram pressures are calculated for a complete range of reduction ratios and die angles, considering a wide range of frictional conditions. Results are compared with upper-bound ram pressures obtained by considering velocity fields other than the radial flow field, and it is shown that for a considerable range of reduction ratios and die angles, the radial flow field yields better upper bounds for the average ram pressure.


Author(s):  
Yi Han ◽  
Feng Liu ◽  
Xin Ran

In the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.


2011 ◽  
Vol 101-102 ◽  
pp. 512-515
Author(s):  
Yi Sheng Liu ◽  
Xu Dong Hu ◽  
Peng Dong Su

A research program is currently underway with the purpose of developing a double-layer air jet looms with solo-supported gas device. Issues related to the design and feasibility analysis of the solo-supported high pressure gas device are discussed. The results of simulations show that assistant nozzle is necessary during weft insertion motion, but too many assistant nozzles would cause the flow velocity reduce. And it is confirmed that flow channel with one main and four assistant nozzles is one of the best designs to keep the flow velocity at the middle line of flow channel more than 90m/s and make the loom work swimmingly.


Author(s):  
Raju Ananth ◽  
Karen Fujikawa ◽  
Jay Gillis

This paper presents a theoretical study of the velocity field in the annulus formed between the Reactor Pressure Vessel (RPV) and the shroud of a Boiling Water Reactor (BWR) under normal and accident flow conditions. Simplified geometry and an ideal irrotational flow are assumed to solve the problem using velocity potentials.


2000 ◽  
Author(s):  
Paul F. Fischer ◽  
Seung Lee ◽  
Francis Loth ◽  
Hisham S. Bassiouny ◽  
Nurullah Arslan

Abstract This was a study to compare computational and experimental results of flow field inside the venous anastomosis of an arteriovenous (AV) graft. Laser Doppler anemometry (LDA) measurements were conducted inside an upscaled end-to-side graft model under steady flow conditions at Reynolds number 1820 which is representative of the in vivo flow conditions inside a human AV graft. The distribution of the velocity and turbulence intensity was measured at several locations in the plane of the bifurcation. This flow field was simulated using computation fluid dynamics (CFD) and shown to be in good agreement. Under steady flow conditions, the flow field demonstrated an unsteady character (transition to turbulence).


2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>


Author(s):  
Igor Zolotarev ◽  
Václav Vlček ◽  
Jan Kozánek

The study presents evaluation of optical measurements of the air flow field near the fluttering profile NACA0015 with two-degrees of freedom, Mach number of the flutter occurrence were M=0.21 and M=0.45. Aerodynamic forces (drag and lift components) were evaluated independently on the upper and lower surfaces of the profile. Using the mentioned decomposition, the new information about mechanism of flutter properties was obtained. The forces on the upper and lower surfaces are phase shifted and are partially eliminated as a result of the circulation around the profile. The cycle changes of these forces cause the permanent energy contribution from the airflow to the vibrating system.


Author(s):  
Sara Mizar Formentin ◽  
Barbara Zanuttigh

This contribution presents a new procedure for the automatic identification of the individual overtopping events. The procedure is based on a zero-down-crossing analysis of the water-surface-elevation signals and, based on two threshold values, can be applied to any structure crest level, i.e. to emerged, zero-freeboard, over-washed and submerged conditions. The results of the procedure are characterized by a level of accuracy comparable to the human-supervised analysis of the wave signals. The procedure includes a second algorithm for the coupling of the overtopping events registered at two consecutive gauges. This coupling algorithm offers a series of original applications of practical relevance, a.o. the possibility to estimate the wave celerities, i.e. the velocities of propagation of the single waves, which could be used as an approximation of the flow velocity in shallow water and broken flow conditions.


Sign in / Sign up

Export Citation Format

Share Document