Mechanical Analysis of Cycloid Gear Rod

2014 ◽  
Vol 926-930 ◽  
pp. 797-801
Author(s):  
Yan Qiu Liu ◽  
Yan Ping Peng ◽  
Tao Chen

This article aims at the fracture problem of the transmission linkage of swaying yarn machine, based on the improved transmission mechanism, used the theory of Kinematics and Mechanics, the paper analyzed and calculated the transverse force and the longitudinal force on the transmission linkage of the swaying yarn machine, and got the force direction and size, and the maximal position and value of bending moment in the one rotary process of the driving crank of transmission linkage, to supply the theory basis of solving the problem of transmission fracture of swaying yarn machine.

Author(s):  
Виктор Миронович Варшицкий ◽  
Евгений Павлович Студёнов ◽  
Олег Александрович Козырев ◽  
Эльдар Намикович Фигаров

Рассмотрена задача упругопластического деформирования тонкостенной трубы при комбинированном нагружении изгибающим моментом, осевой силой и внутренним давлением. Решение задачи осуществлено по разработанной методике с помощью математического пакета Matcad численным методом, основанным на деформационной теории пластичности и безмоментной теории оболочек. Для упрощения решения предложено сведение двумерной задачи к одномерной задаче о деформировании балки, материал которой имеет различные диаграммы деформирования при сжатии и растяжении в осевом направлении. Проведено сравнение с результатами численного решения двумерной задачи методом конечных элементов в упругопластической постановке. Результаты расчета по инженерной методике совпадают с точным решением с точностью, необходимой для практического применения. Полученные результаты упругопластического решения для изгибающего момента в сечении трубопровода при комбинированном нагружении позволяют уточнить известное критериальное соотношение прочности сечения трубопровода с кольцевым дефектом в сторону снижения перебраковки. Применение разработанной методики позволяет ранжировать участки трубопровода с непроектным изгибом по степени близости к предельному состоянию при комбинированном нагружении изгибающим моментом, продольным усилием и внутренним давлением. The problem of elastic plastic deformation of a thin-walled pipe under co-binned loading by bending moment, axial force and internal pressure is considered. The problem is solved by the developed method using the Matcad mathematical package by a numerical method based on the deformation theory of plasticity and the momentless theory of shells. To simplify the solution of the problem, it is proposed to reduce a twodimensional problem to a one-dimensional problem about beam deformation, the material of which has different deformation diagrams under compression and tension in the axial direction. Comparison with the results of numerical solution of the two-dimensional problem with the finite element method in the elastic plastic formulation is carried out. The obtained results of the elastic-plastic solution for the bending moment in the pipeline section under combined loading make it possible to clarify criterion ratio of the strength of the pipeline section with an annular defect in the direction of reducing the rejection. Application of the developed approach allows to rank pipeline sections with non-design bending in the steppe close to the limit state under combined loading of the pipeline with bending moment, longitudinal force and internal pressure.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Fabiola Navarro-Pardo ◽  
Ana L. Martínez-Hernández ◽  
Victor M. Castaño ◽  
José L. Rivera-Armenta ◽  
Francisco J. Medellín-Rodríguez ◽  
...  

Carbon nanotubes (CNTs) and graphene were used as reinforcing fillers in nylon 6,6 in order to obtain nanocomposites by using an injection moulding process. The two differently structured nanofillers were used in their pristine or reduced form, after oxidation treatment and after amino functionalisation. Three low nanofiller contents were employed. Crystallisation behaviour and perfection of nylon 6,6 crystals were determined by differential scanning calorimetry and wide angle X-ray diffraction, respectively. Crystallinity was slightly enhanced in most samples as the content of the nanofillers was increased. The dimensionality of the materials was found to provide different interfaces and therefore different features in the nylon 6,6 crystal growth resulting in improved crystal perfection. Dynamical, mechanical analysis showed the maximum increases provided by the two nanostructures correspond to the addition of 0.1 wt.% amino functionalised CNTs, enhancing in 30% the storage modulus and the incorporation of 0.5 wt.% of graphene oxide caused an increase of 44% in this property. The latter also provided better thermal stability when compared to pure nylon 6,6 under inert conditions. The superior properties of graphene nanocomposites were attributed to the larger surface area of the two-dimensional graphene compared to the one-dimensional CNTs.


Author(s):  
Y. Alizadeh Vaghasloo ◽  
Abdolreza Pasharavesh ◽  
M. T. Ahmadian ◽  
Ali Fallah

In this paper, size dependent static behavior of micro and nano cantilevers actuated by a static electric field including deflection and pull-in instability, is analyzed implementing nonlocal theory. Euler-bernoulli assumptions are made to model the relation between deflection of the beam and bending moment. Differential form of the constitutive equation of nonlocal theory is used to find the revised equation for bending moment and substituting in the equilibrium equation of electrostatically actuated beams final nonlinear ordinary differential equation is arrived. Also the boundary conditions for solving the equation are revised and to analyze the size effect better governing equation is nondimetionalized. The one parameter Galerkin method is used to transform this equation to a nonlinear algebraic equation. Arrived algebraic equation is solved utilizing Newton-Raphson method. Size effect on the maximum deflection and deflection shape for various applied voltages is studied. Also effect of beam size on the static pull-in voltage is studied. Results indicate that the dimensionless beam deflection decreases as size decreases while the pull-in voltage increases and specially change of deflection and pull-in voltage is significant for nanobeams.


1955 ◽  
Vol 22 (3) ◽  
pp. 311-316
Author(s):  
P. G. Hodge

Abstract The centrifugal forces acting upon a rotating ray will produce longitudinal stresses along the ray. If the ray is not symmetric, these stresses will result not only in a longitudinal force, but also in a bending moment. A technique for finding the stress distribution in this case is developed and illustrated by means of simple examples. The limiting elastic speed and the maximum speed before large-scale plastic deformation commences are computed. An indication is given of how similar methods may be used to analyze a rotating disk with no plane of symmetry perpendicular to the axis.


2021 ◽  
Vol 26 (1) ◽  
pp. 279-292
Author(s):  
María A. Prats ◽  
Gloria M. Soto

The aim of this paper is to investigate whether the effectiveness of the transmission mechanism of monetary  policy in Spain has changed since EMU establishment. The analysis is based on the fulfillment of the Expectations Hypothesis under rational expectations and the methodology is implemented through a  cointegrated  bivariate VAR model. The results reveal the existence of  monetary transmission in the term structure in the  period prior to EMU, even though the evidence is stronger up to the one-year rate. From 1999, the results are   only consistent with a weak evidence of monetary transmission.


2019 ◽  
Vol 82 ◽  
pp. 153-165
Author(s):  
M. Rieutord

We discuss the possible contraints that are brought about by a fluid mechanical analysis of the overshooting phenomenon at the interface of convective cores and radiative envelopes of early-type stars. We investigate an improvement of Roxburgh’s criterion by taking into account the viscous dissipation but show that this criterion remains not stringent enough to be predictive. We then discuss the thickness of the overshooting layer and show that all estimates, including the one of Zahn (1991), lead to a very thin mixing layer typically less than a percent of the pressure scale height.


2019 ◽  
Vol 968 ◽  
pp. 200-208
Author(s):  
Mykola Soroka

The paper considers the problem of the ultimate load finding for structures made of a material with different limits of tensile strength and compression. The modulus of elasticity under tension and compression is the same. It is assumed that upon reaching the ultimate strength, the material is deformed indefinitely. The calculations use a simplified material deformation diagram — Prandtl diagrams. The limiting state of a solid rectangular section under the action of a longitudinal force and a bending moment is considered. The dependences describing the boundary of the strength of a rectangular cross section are obtained. Formulas allowing the calculation of the values of the limit forces and under the action of which the cross section passes into the plastic state are derived. Examples of the analytical calculation of the maximum load for the frame and two-hinged arch are given. An algorithm is proposed and a program for calculating arbitrary flat rod systems according to the limit state using the finite element method is compiled. The proposed algorithm does not involve the use of iterative processes, which leads to an exact calculation of the maximum load within the accepted assumptions.


2000 ◽  
Vol 68 (5) ◽  
pp. 809-812 ◽  
Author(s):  
G. Monegato ◽  
A. Strozzi

A purely flexural mechanical analysis is presented for a thin, solid, circular plate, deflected by a central transverse concentrated force, and bilaterally supported along two antipodal periphery arcs, the remaining part of the boundary being free. This problem is modeled in terms of a singular integral equation of the Prandtl type, which possesses a unique solution expressed in terms of a reaction force containing a factor exhibiting square root endpoint singularities. This solution is then shown not to respect the requested boundary constraints. It is therefore concluded that, within the framework of the purely flexural plate theory, the title problem cannot admit the weighted L2 solution here examined. It cannot, however, be excluded that a solution to the title problem exists, which possesses stronger endpoint singularities than those examined in this paper, or is of a more general form than the one considered here.


2011 ◽  
Vol 3 (2) ◽  
pp. 56-63
Author(s):  
Rimantas Belevičius ◽  
Darius Mačiūnas ◽  
Dmitrij Šešok

The aim of the article is to report a technology for the optimization of grillage-type foundations seeking for the least possible reactive forces in the piles for a given number of piles and in the absolute value of the bending moments when connecting beams of the grillage. Mathematically, this seems to be the global optimization problem possessing a large number of local minima points. Both goals can be achieved choosing appropriate pile positions under connecting beams; however, these two problems contradict to each other and lead to diff erent schemes for pile placement. Therefore, we suggest using a compromise objective function (to be minimized) that consists of the largest reactive force arising in all piles and that occurring in the absolute value of the bending moment when connecting beams, both with the given weights. Bending moments are calculated at three points of each beam. The design parameters of the problem are positions of the piles. The feasible space of design parameters is determined by two constraints. First, during the optimization process, piles can move only along connecting beams. Therefore, the two-dimensional grillage is “unfolded” to the one-dimensional construct, and supports are allowed to range through this space freely. Second, the minimum allowable distance between two adjacent piles is introduced due to the specific capacities of a pile driver. Also, due to some considerations into the scheme of pile placement, the designer sometimes may introduce immovable supports (usually at the corners of the grillage) that do not participate in the optimization process and always retain their positions. However, such supports hinder to achieve a global solution to a problem and are not treated in this paper. The initial data for the problem are as follows: a geometrical scheme of the grillage, the given number of piles, a cross-section and material data on connecting beams, the minimum possible distance between adjacent supports and loading data given in the form of concentrated loads or trapezoidal distributed loadings. The results of the solution are the required positions of piles. This solution can serve as a pilot project for more detailed design. The entire optimization problem is solved in two steps. First, the grillage is transformed into the one-dimensional construct and the optimizer decides about a routine solution (i.e. the positions of piles in this construct). Second, backward transformation returns pile positions into the two-dimensional grillage and the “black-box” finite element program returns the corresponding objective function value. On the basis of this value, the optimizer predicts new positions of piles etc. The finite element program idealizes connecting beams as beam elements and piles – as mesh nodes of the finite element with a given boundary conditions in the form of vertical and rotational stiff ness. Since the problem may have several tens of design parameters, the only choice for optimization algorithms is using stochastic optimization algorithms. In our case, we use the original elitist real-number genetic algorithm and launch the program sufficient number of times in order to exclude large scattering of results. Three numerical examples are presented for the optimization of 10-pile grillage: when optimizing purely the largest reactive force, purely the largest in the absolute value of the bending moment and both parameters with equal weights.


Sign in / Sign up

Export Citation Format

Share Document