Characterization and Utilization of Char Derived from Fast Pyrolysis of Plastic Wastes

2014 ◽  
Vol 931-932 ◽  
pp. 849-853 ◽  
Author(s):  
Jindaporn Jamradloedluk ◽  
Chaloenporn Lertsatitthanakorn

HDPE plastic wastes were fast pyrolyzed at temperature of 400-450°C and char (solid residues) obtained were collected and analyzed. Proximate and ultimate analyses showed that pyrolysis char had a large amount of volatile matter (51.40%) and fixed carbon (46.03%), small amount of moisture (2.41%) and little amount of ash (0.16%). Contents of carbon, hydrogen, nitrogen, and sulfur were found to be 42.65, 3.06, 0.43%, and 1.80%, respectively. Calorific value and density of the char were also determined and reported as 4,500 cal/g and 1.59 g/cm3, respectively. Char derived from the fast pyrolysis of HDPE plastic wastes was crushed into powder and extruded to produce briquettes. One kilogram of the char based briquette was used as a fuel for the combustion process (boiling water). Atmospheric-pressure thermal activation at 900°C for 3 hours was performed to promote surface area and specific pore volume of the char. Undergoing such an activation process, BET surface area and pore volume of the char were increased by 55% and 44% whereas pore size was reduced by 5%, corresponding to the values of 16.77 m2/g, 0.2080 cm3/g and 496 Å, respectively.

Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 634 ◽  
Author(s):  
Wen-Tien Tsai ◽  
Po-Cheng Huang ◽  
Yu-Quan Lin

In this work, the thermochemical analyses of dairy manure (DM), including the proximate analysis, ultimate (elemental) analysis, calorific value, thermogravimetric analysis (TGA), and inorganic elements, were studied to evaluate its potential for producing DM-based char (DMC) with high porosity. The results showed that the biomass should be an available precursor for producing biochar materials based on its high contents of carbon (42.63%) and volatile matter (79.55%). In order to characterize their pore properties, the DMC products produced at high pyrolysis temperatures (500–900°C) were analyzed using surface area and porosity analyzer, pycnometer, and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). The values of pore properties for the DMC products increased with an increase in pyrolysis temperature, leading to more pore development and condensed aromatic cluster at elevated temperatures. Because of the microporous and mesoporous structures from the N2 adsorption–desorption isotherms with the hysteresis loops (H4 type), the Brunauer–Emmett–Teller (BET) surface area of the optimal biochar (DMC-900) was about 360 m2/g, which was higher than the data reported in the literature. The highly porous structure was also seen from the SEM observations. More significantly, the cation exchange capacity (CEC) of the optimal DMC product showed a high value of 57.5 ± 16.1 cmol/kg. Based on the excellent pore and chemical properties, the DMC product could be used as an effective amendment and/or adsorbent for the removal of pollutants from the soil media and/or fluid streams.


2019 ◽  
Vol 69 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Arjun Singh ◽  
Sanjeevan Aggrawal ◽  
Darshan Lal

Phenolic beads (PBs) prepared from different formaldehyde to phenol (F/P) molar ratios were used as polymeric precursor for activated carbon. Activated carbon spheres (ACSs) have been produced from PBs via the physical activation process using carbon dioxide (CO2) as activating agent at 950 °C for different burn-off. The prepared ACSs were investigated for nitrogen adsorption, surface morphology and compressive strength by means of BET surface area analyser, scanning electron microscopy (SEM) and carbon and sphere tester techniques. The results indicated that the effects of F/P ratio observed, especially variation in the adsorption and mechanical properties. It was found that ACSs obtained from F/P ratio one showed the superior adsorption properties, possessed a high BET surface area in a range of 836 m2 g-1 to 3694 m2 g-1 with high pore volume (0.47 cm3 g-1 - 2.47 cm3 g-1) and 73-97 per cent microporosity. The BET surface area and pore volume increased, while the microporosity gradually decreased, with increasing the extent of burn-off. Compressive strength decreased with increasing F/P ratio as well as the extent of burn-off. ACSs upheld improved compressive strength (from 160 N mm-2 to 9 N mm-2) than those obtained from F/P ratio 2 and 3 in PBs. SEM studies of ACSs demonstrated well developed pore structure.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Hyunho Shin ◽  
Jun-Ho Eun

A TiC powder is synthesized from a micron-sized mesoporous metatitanic acid-sucrose precursor (precursor M) by a carbothermal reduction process. Control specimens are also prepared using a nanosized TiO2-sucrose precursor (precursor T) with a higher cost. When synthesized at 1500°C for 2 h in flowing Ar, the characteristics of the synthesized TiC from precursor M are similar to those of the counterpart from precursor T in terms of the crystal size (58.5 versus 57.4 nm), oxygen content (0.22 wt% versus 0.25 wt%), and representative sizes of mesopores: approximately 2.5 and 19.7–25.0 nm in both specimens. The most salient differences of the two specimens are found in the TiC from precursor M demonstrating (i) a higher crystallinity based on the distinctive doublet peaks in the high-two-theta XRD regime and (ii) a lower specific surface area (79.4 versus 94.8 m2/g) with a smaller specific pore volume (0.1 versus 0.2 cm3/g) than the counterpart from precursor T.


2017 ◽  
Vol 11 (5) ◽  
pp. 47 ◽  
Author(s):  
Heman A. Smail ◽  
Kafia M. Shareef ◽  
Zainab H. Ramli

The adsorption of lead (Pb II) ion on different types of synthesized zeolite was investigated. The BET surface area, total pore volume & average pore size distribution of these synthesized zeolites were determined by adsorption isotherms for N2, the surface area & total pore volume of their sources were found by adsorption isothermN2.The adsorption equilibrium was measured after 24h at room temperature (RT) & concentration 10mg.L-1 of Pb (II) was used. The adsorption of heavy metal Pb (II) on four different prepared zeolites (LTA from Montmorillonite clay, FAU(Y)-B.H (G2) from Barley husk, Mordenite (G1) from Chert rock, FAU(X)-S.C (G3) from shale clay & modified Shale clay by oxalic acid (N1) & sodium hydroxide (N2)), were compared with the adsorption of their sources by using static batch experimental method. The major factors affecting the heavy metal ion sorption on different synthesized zeolites & their sources were investigated. The adsorption equilibrium capacity (Qm) of Pb (II) ion for different synthesized zeolites ordered from (N1>N2>LTA>G3>G2>G1&for their sources ordered Shale clay >Montmorilonite> Barley husk>Chert rock. The atomic absorption spectrometry was used for analysis of lead heavy metal ion, the obtained results in this study showed that the different synthesized zeolites were efficient ion exchanges for removing heavy metal, in particular, the modified zeolite from shale clay by oxalic acid.


2020 ◽  
Vol 190 ◽  
pp. 00030
Author(s):  
Qurrotin Ayunina Maulida Okta Arifianti ◽  
Azmi Alvian Gabriel ◽  
Syarif Hidayatulloh ◽  
Kuntum Khoiro Ummatin

The current research aimed to increase the calorific value of woody cutting waste briquette with paper waste pulp as binder. There were three different binder variation used in this study, they are 5 %, 10 %, and 15 %. To create a briquette, a cylindrical iron mold with diameter of 3.5 cm and height of 3 cm and a hydraulic press with 2 t power were applied. The physical characteristics of the combination woody waste briquette and paper waste pulp, such as moisture content, ash content, volatile matter and carbon fix were examined using proximate analysis. The calorific value of briquetted fuel was tested by bomb calorimeter. The combustion test was performed to determine the combustion characteristic of briquettes, for example initial ignition time, temperature distribution, and combustion process duration. The general result shows that the calorific value of briquette stood in the range of 4 876 kCal kg–1 to 4 993 kCal kg–1. The maximum moisture content of briquette was 5.32 %. The longest burning time was 105 min.


2020 ◽  
Vol 56 (49) ◽  
pp. 6715-6718 ◽  
Author(s):  
Zi-Jian Li ◽  
Yu Ju ◽  
Bowen Yu ◽  
Xiaoling Wu ◽  
Huangjie Lu ◽  
...  

Isoreticular expansion of Th-MOFs via modulated synthesis yielded seven hierarchical complexes with superior quality single crystals, record high void space and BET surface area among Th materials, and exceptional iodine adsorption capacities.


2020 ◽  
Vol 154 ◽  
pp. 02003
Author(s):  
Grzegorz Pełka ◽  
Wojciech Luboń ◽  
Przemysław Pachytel

In the municipal and residential sector in Poland, as many as 50% of households are heated by solid fuel boilers. Most often these are, unfortunately, inefficient boilers, fired with low-quality coal. This study characterizes the market of boilers for solid fuels in Poland, and also presents the main apportionment of these devices, due to the different criteria that characterize them. The current legal changes in the scope of energy and emission requirements for solid fuel boilers are also discussed. The main purpose of this work is to analyze the real efficiency of the solid fuel over-fired boiler used, depending on the fuel burned in it. The process of burning selected fuels (seasoned wood, coal and pea coal) in the boiler was preceded by tests of these fuels to determine their energy parameters, such as moisture, ash content, the share of volatile matter and calorific value. In the next step, the energy efficiency obtained by the tested solid fuel boiler during the combustion of selected solid fuels was compared. The highest efficiency was achieved during the combustion of pea coal, and the lowest was achieved during the combustion of wood. In any case, the nominal efficiency value was achieved. Solutions that could improve the quality of the combustion process in this type of boiler were proposed.


1997 ◽  
Vol 15 (6) ◽  
pp. 465-476 ◽  
Author(s):  
G.A. El-Shobaky ◽  
A.M. Ghozza ◽  
G.M. Mohamed

Two samples of Cr2O3/Al2O3 were prepared by mixing a known mass of finely powdered Al(OH)3 with a calculated amount of CrO3 solid followed by drying at 120°C and calcination at 400°C. The amounts of chromium oxide employed were 5.66 and 20 mol% Cr2O3, respectively. The calcined solid specimens were then treated with different doses of γ-rays (20–160 Mrad). The surface and catalytic properties of the different irradiated solids were investigated using nitrogen adsorption at −196°C and the catalysis of CO oxidation by O2 at 300–400°C. The results revealed that γ-rays brought about a slight decrease in the BET surface area, SBET (15%), and in the total pore volume, Vp (20%), of the adsorbent containing 5.66 mol% Cr2O3. The same treatment increased the total pore volume, Vp (36%), and the mean pore radius, r̄ (43%), of the other adsorbent sample without changing its BET surface area. The catalytic activities of both catalyst samples were found to increase as a function of dose, reaching a maximum value at 80–160 Mrad and 40 Mrad for the solids containing 5.66 and 20 mol% Cr2O3, respectively. The maximum increase in the catalytic activity measured at 300°C was 59% and 100% for the first and second catalyst samples, respectively. The induced effect of γ-irradiation on the catalytic activity was an increase in the concentration of catalytically active sites taking part in chemisorption and in the catalysis of CO oxidation by O2 without changing their energetic nature. This was achieved by a progressive removal of surface hydroxy groups during the irradiation process.


2019 ◽  
Vol 944 ◽  
pp. 1192-1198
Author(s):  
Rong Wang ◽  
Zhi Xiang Lin ◽  
Yang Zhao ◽  
Xiao Dong Xu ◽  
Yan Xi Deng

An Al-supported cage-like mesoporous silica type MCM-41 has been prepared using a simple one-step synthetic procedure using oil shale residue and CTAB(Hexadecyl trimethyl Ammonium Bromide) as the template. The effects of temperature on the porosity, structure and surface area of Al-MCM-41 mesoporous materials were characterized by X-ray powder diffraction, N2adsorption desorption, scanning electron micrographs (SEM), transmission electron microscopy (TEM) techniques and Fourier transform infrared spectroscopy (FT-IR). The results indicated that temperature was a key to the characteristics of Al-MCM-41 materials, and when the temperature up to 333 K, Al-MCM-41 exhibited excellent characteristics with high degree of order, high surface area and pore volume. The one-step hydrothermal synthesized MCM-41 mesoporous material possessed high BET surface area, high pore size and high pore volume. They are respectively 835.1 m2/g, 32.6 Å and 1.22 cm3/g under the condition of the Si : Al =78:1, pH =10, crystallization temperature was 333K, crystallization time was 48h and calcination at 823 K for 5 h in air. All the results indicated the possibility of using oil shale residue as silicon and aluminum source to produce Al-MCM-41, and gave us a new way to recycle a solid waste. As well as this made it impossible to large-scale production of Al-MCM-41. Keywords: Al-MCM-41 mesoporous materials, oil shale residue, one-step synthesis


2019 ◽  
Vol 8 (1) ◽  
pp. 408-415 ◽  
Author(s):  
Wenhai Hu ◽  
Song Cheng ◽  
Hongying Xia ◽  
Libo Zhang ◽  
Xin Jiang ◽  
...  

Abstract The waste phenolic resin was utilized as the raw material to prepare activated carbon (AC) used KOH as the activating agent via microwave heating. The phenolic resin was carbonized at 500°C and then performed with a KOH/Char ratio of 4 and microwave power of 700 W for a duration of 15 min. The physic-chemical characteristics of the AC were characterized by N2 adsorption instrument, FTIR, SEM and TEM. The BET surface area and pore volume of AC were found to be 4269 m2/g and 2.396 ml/g, respectively. The activation process to generate such a phenomenally high surface area of the AC has little reported in open literatures and could pave way for preparation adsorbents that are far superior to the currently marketed adsorbents. The methylene blue (MB) was used as the model to assess its suitability to dye wastewater treatment. Towards this, the MB adsorption isotherms were conducted at three different temperatures and tested with different adsorption isotherm models. The adsorption isotherms could be modeled using Langmuir isotherm. While the kinetics could be used the pseudo-second order kinetics to describe. Thermodynamic results demonstrated that the adsorption process was a spontaneous, as well as an endothermic.


Sign in / Sign up

Export Citation Format

Share Document