Experimental Investigation on Rotary Punching by the Compression of Polyurethane Pad

2014 ◽  
Vol 941-944 ◽  
pp. 1802-1807 ◽  
Author(s):  
Qian Liu ◽  
Jing Tao Han ◽  
Jing Liu ◽  
Xiao Xiong Wang

Rotary punching is a sheet metal blanking process which utilizes shearing tools fixed to a pair of rollers. The polyurethane pad is adopted as the die instead of rigid mold because it has the advantages of wide hardness range and high load-bear capacity. Due to the application of polyurethane pad, the surrounding region adjacent to the pierced hole will occur to plastically deform and deflect, which greatly differs from that in the conventional blanking. In this paper, the effects of blank material and thickness, polyurethane hardness, punch penetration depth on deformation behavior were mathematically analyzed and modeled, and then a series of experiments through varying process parameters were conducted to validate the relationship between process parameters and product quality. The degree of sample deflection was exactly measured by scanning electron microscope (SEM). The results show that the deformed area varies with different blank elongations and increases with increasing blank thickness for a given material. When polyurethane pad with low hardness level is employed, it results in large area deformation and quality degradation. Moreover, the deflection degree around the hole edge becomes more severe along with punch penetration, but the penetration depth along blank thickness is not in proportion to the amount of punch advancement.

2016 ◽  
Vol 36 (3) ◽  
pp. 226-238 ◽  
Author(s):  
Jinxiang Cheng ◽  
Dongbiao Zhao ◽  
Kai Liu ◽  
Yangwei Wang

Composite automated placement shows great potential for efficient manufacturing of large composite structures. In order to realize online layup quality detection and parameter optimization with high speed and desired layup quality, a methodology is developed based on assumed inherent sensor inversion. First, it is necessary to conduct sensitive analysis in order to analyze the importance of process parameters and their changes. Then the relationship between these process parameters and the layup quality could be established by assumed inherent sensor inversion, which is considered as the basis of parameter optimization. Simultaneously, genetic algorithm combined with the multi-objective optimization theory is applied to determine the optimum set for obtaining desired composite components with high speed and best layup quality. A series of experiments had been conducted to verify the feasibility of the developed approach. Results demonstrate that the model has high precision, and significant improvement could be achieved through parameter optimization.


2012 ◽  
Vol 501 ◽  
pp. 442-447
Author(s):  
Ping Fu ◽  
Feng Bao Bai ◽  
Chuan Sheng Wang ◽  
Shan Hu Li

In this paper adopting the orthogonal method, self-developed compound formulation had tested, and the relationship between the physical properties of vulcanized rubber and rectangular synchronous rotor mixer parameters had researched. The results showed that when the fill factor was 0.6, the rotor speed was 70r/min, cooling water temperature was 45 °C, pressure on the top bolt was 0.8Mpa, the physical properties of the vulcanized rubber was best.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 4947-4962
Author(s):  
Jin Yan ◽  
Jianan Liu ◽  
Liqiang Zhang ◽  
Zhili Tan ◽  
Haoran Zhang ◽  
...  

The influence of the process parameters on the mechanical properties of compact wood powder generated via hot-pressing was analyzed through a single-factor experiment. The mechanical properties exhibited a nonlinear trend relative to the process conditions of hot-pressed compact wood powder. The relationship models between the process parameters and the mechanical properties for the compact wood powder were established by applying a multiple regression analysis and neural network methods combined with data from an orthogonal array design. A comparison between experimental and predicted results was made to investigate the accuracy of the established models by applying several data groups among the single-factor experiments. The results showed that the accuracy of the neural network model in terms of predicting the mechanical properties was greater compared with the multiple regression model. This demonstrates that the established neural network model had a better prediction performance, and it can accurately map the relationship between the process conditions and the mechanical properties of the compact wood powder.


2018 ◽  
Vol 207 ◽  
pp. 04005
Author(s):  
Min Hu

This paper studies WELDOX960 high strength steel, analysis of the welding ability of WELDOX960 high strength steel. Analyze the weld ability of WELDOX960 high-strength steel materials, and study the influence of process parameters such as welding current, welding voltage, and welding speed on penetration depth and weld width in the automated welding process. Through this test, the welding process is optimized to ensure the weld quality. The results show that WELDOX960 high-strength steel adopts multi-layer and multi-pass welding to form better welds.


Mechanika ◽  
2020 ◽  
Vol 26 (6) ◽  
pp. 540-544
Author(s):  
Jayaraj JEEVAMALAR ◽  
Sundaresan RAMABALAN ◽  
Chinnamuthu SENTHILKUMAR

Modelling is used for correlating the relationship between the input process parameters and the output responses during the machining process. To characterize real-world systems of considerable complexity, an Artificial Neural Network (ANN) model is regularly used to replace the mathematical approximation of the relationship. This paper explains the methodological procedure and the outcome of the ANN modeling process for Electrical Discharge Drilling of Inconel 718 superalloy and hollow tubular copper as tool electrode. The most important process parameters in this work are peak current, pulse on time and pulse off time with machining performances of material removal rate and surface roughness. The experiments were performed by L20 Orthogonal Array. In such conditions, an Artificial Neural Network model is developed using MATLAB programming on the Feed Forward Back Propagation technique was used to predict the responses. The experimental data were separated into three parts to train, test the network and validate the model. The developed model has been confirmed experimentally for training and testing in considering the number of iterations and mean square error convergence criteria. The developed model results are to approximate the responses fairly exactly. The model has the mean correlation coefficient of 0.96558. Results revealed that the proposed model can be used for the prediction of the complex EDM drilling process.


2021 ◽  
Vol 6 (4) ◽  
pp. 251-261
Author(s):  
Manh Tien Nguyen ◽  
Truong An Nguyen ◽  
Duc Hoan Tran ◽  
Van Thao Le

This work aims to optimize the process parameters for improving the wall thickness distribution of the sheet superplastic forming process of AA7075 alloy. The considered factors include forming pressure p (MPa), deformation temperature T (°C), and forming time t (minutes), while the responses are the thinning degree of the wall thickness ε (%) and the relative height of the product h*. First, a series of experiments are conducted in conjunction with response surface method (RSM) to render the relationship between inputs and outputs. Subsequently, an analysis of variance (ANOVA) is conducted to verify the response significance and parameter effects. Finally, a numerical optimization algorithm is used to determine the best forming conditions. The results indicate that the thinning degree of 13.121% is achieved at the forming pressure of 0.7 MPa, the deformation temperature of 500°C, and the forming time of 31 minutes.


2010 ◽  
Vol 34-35 ◽  
pp. 641-645
Author(s):  
Hong Shuang Zhang

In order to fully understanding the distribution of residual stress after riveting and the relationship between residual stress and riveting process parameters during riveting, Finite Element Method was used to establish a riveting model. Quasi-static method to solve the convergence difficulties was adopted in riveting process. The riveting process was divided into six stages according to the stress versus time curves. The relationship of residual stress with rivet length and rivet hole clearance were established. The results show numerical simulation is effective for riveting process and can make a construction for the practical riveting.


Author(s):  
Kuanyu Liu ◽  
Xinsheng Yang ◽  
Li Zhou ◽  
Ming Li ◽  
Weijin Zhu

The reaming process of the 6061 aluminum alloy plate after cold expansion with split sleeve was simulated by finite element (FE) method based on Abaqus/CAE, the relationship between the reaming depths and the distribution of residual stress fields is obtained by analysis. The fatigue lives of the plate under different reaming depths were calculated by using the fatigue analysis software FE-SAFE, and verified by fatigue tests. The results show that reaming after expansion will increase the residual compressive stress at the hole edge on the entrance surface. In addition, the fatigue life of the specimens increases with the increase of the reaming depth, and the best fatigue gain of the specimen is obtained when the reaming depth of 0.5 mm.


Author(s):  
T.M. Azeez ◽  
Lateef O. Mudashiru ◽  
T.B. Asafa ◽  
A.A. Adeleke ◽  
Peter Pelumi Ikubanni

Mechanical properties of extruded aluminum are known to significantly depend on the process parameters such as temperature, numbers of extrusion pass and extrusion load among others. This implies that these properties can be influenced by tuning the process parameters. Herein, the effects of these parameters on the tensile strength and hardness of aluminum 6063 series were investigated by using equal channel angular extrusion (ECAE). Experiments were designed using Design Expert software. Analysis of variance (ANOVA) was then used to investigate the main and interactions effects of the process parameters. An empirical mathematical model was generated that shows the relationship between the input and output variables using response surface methodology. Temperature was found to be the most significant factor while extrusion load was the least factor that influenced the hardness and tensile strength which were the output factors. There was a significant increase in tensile strength and hardness after extrusion at different mix of factors. The optimum input variable was discovered at 1020.58 kN, 489.67°C and 3 numbers of extrusion passes.


1991 ◽  
Vol 260 (1) ◽  
pp. R39-R46 ◽  
Author(s):  
K. W. Cho ◽  
K. H. Seul ◽  
S. H. Kim ◽  
K. M. Seul ◽  
G. Y. Koh

It has been suggested in this laboratory that the principal stimulus for the secretion of atrial natriuretic peptide (ANP) is the reduction of atrial distension and that the secretion of ANP is dependent on both atrial reduction volume and reduction frequency. To investigate the relationship among the changes in atrial pressure, distension, pacing frequency, and ANP secretion, we performed a series of experiments in the isolated perfused rabbit atria. Increase in atrial pressure without changes in transmural pressure and thus without volume changes did not raise immunoreactive ANP (irANP) secretion. Atrial distension without changes in intracavitary atrial pressure increased irANP secretion with the reduction. Electrical stimulation with atrial distension resulted in an increase in irANP secretion in proportion to pacing frequency. Incremental response of irANP secretion to electrical stimulation was accentuated by increasing atrial distension. Neither atrial pacing without distension nor distension without pacing raised irANP secretion. These results suggest that the direct and principal stimulus for irANP secretion in response to atrial pacing and distension is the length shortening of atrial myocytes and that the incremental response of irANP secretion to increasing pacing frequency is the result of an increase in frequency of the length shortening of atrial myocytes.


Sign in / Sign up

Export Citation Format

Share Document