Design and Characterization of Ultrahigh Strength Dual-Phase Steel with Low Ratio of Yield Strength/Ultimate Tensile Strength

2010 ◽  
Vol 97-101 ◽  
pp. 728-732
Author(s):  
Xin Sheng Liao ◽  
Xiao Dong Wang ◽  
Xu Fei Li ◽  
Zheng Hong Guo ◽  
Yong Hua Rong

An ultrahigh strength dual-phase (DP) steel with low ratio of yield strength/ultimate tensile strength (YS/UTS) was designed based on the simulation using JmatPro software so as to improve formability as well as to extend its application in automobile industry. Results show the DP steel suffered from water quenching (WQ) technology exhibits high ratio, 0.872, of YS/UTS, which loses the advantage of formability of DP steels and restricts its application in automobile industry. Therefore, the controlled slow-cooling rate (CSCR) technology is employed to this DP steel, and the low ratio, 0.458, of YS/UTS is obtained. Although the tensile strengths of the DP steel suffered from two kinds of technologies are over 1000 MPa, The YS of the DP steel with CSCR technology is 480 MPa and is much lower than 983MPa of the DP steel with WQ technology, which are attributed to relative large grains and small volume fraction of martensite in the former based on the characterization of microstructure by optical microscope, scanning electron microscope, transmission electron microscope and electron backscattering diffraction.

2011 ◽  
Vol 695 ◽  
pp. 271-274
Author(s):  
Xiao Yong Zhang ◽  
Hui Lin Gao ◽  
Xue Qin Zhang ◽  
Yan Yang

The pipeline steel with excellent deformability with ferrite and bainite dual-phase microstructure are obtained by inter-critically accelerating cooling method, aiming to get good deformation capability of avoiding failure from the geological disasters such as landslides and earthquake. The influence of volume fraction of bainite on the mechanical properties of dual-phase pipeline steels was investigated by means of microscopic analysis method and mechanical properties testing. The results indicated that both yield strength and ultimate tensile strength of the steels increase almost linearly with the increasing volume fraction of bainite, while ductility, work hardening exponent and impact absorption energy decrease. When the volume fraction of bainite is about 50%, the yield strength, the yield strength/tensile strength ratio (Y/T), work hardening exponent, uniform elongation and impact absorption energy of X80 pipeline steels with excellent deformability is 665MPa, 0.8, 0.12, 8% and 245J respectively.


2012 ◽  
Vol 184-185 ◽  
pp. 940-943
Author(s):  
Wei Lv ◽  
Di Wu ◽  
Zhuang Li

In the present paper, controlled cooling in different ways was performed using a laboratory hot rolling mill in ultra-high strength hot rolled ferrite-bainite dual phase (DP) steel. The results have shown that the final microstructures of DP steel comprise ferrite, bainite and a small amount of retained austenite and martensite. DP steel has a tensile strength ranging from 1010 to 1130MPa and yet retains considerable total elongation in the range of 14–17%. The addition of Mn and Nb to DP steel leads to the maximum ultimate tensile strength, yield strength and the product of ultimate tensile strength and total elongation due to the formation of retained austenite and granular bainite structure. Laminar flow cooling after hot rolling results in a significant increase in the quantity of ferrite and bainite due to the suppression of pearlite transformation, and as a result, the present steel possesses high strengths and good toughness.


Author(s):  
B. F. Luan ◽  
L. Q. Yang ◽  
T. G. Wei ◽  
K. L. Murty ◽  
C. S. Long ◽  
...  

To investigate the effects of Mo and Bi on mechanical properties of a Zr-Fe-Cr alloy at room temperature, seven Zr-Fe-Cr-Mo-Bi alloys with different compositions were designed. They were subjected to a series of rolling processes and heat treatments, and then sampled to measure mechanical properties by hardness and tensile test and to characterize microstructures by scanning electron microscope (SEM) and electron channel contrast (ECC) technique. Results indicated that among them two types of Zr-Fe-Cr-Mo-Bi alloys achieve the designed goals on mechanical properties and have the following advantages: (i) the hardness of the alloys, up to 334HV after annealing, is 40% higher than traditional Zr-4. (ii) The yield strength (YS) and ultimate tensile strength (UTS) of the alloys are 526 MP a and 889 MP a after hot rolling and annealing, markedly higher than the traditional Zr alloy. (iii) Good plasticity of the new Zr-Fe-Cr-Mo-Bi alloy is obtained with about 40% elongation, which is greatly higher than the Zr-Fe-Cr-Mo alloy thanks to the addition of Bi offsetting the disadvantage of addition Mo. Furthermore, according to observations of the microstructure observation, the reasons of the effect of the Mo and Bi elements on the mechanical performance of Zr-Fe-Cr alloy were studied and discussed.


2017 ◽  
Author(s):  
Zhenglong Liang ◽  
Qi Zhang

A novel process which combines casting with forging during one process was proposed to improve mechanical properties and refine microstructure. The microstructure evolution of as-cast samples and forged samples were analyzed by optical microscope and scanning electron microscope (SEM). The tensile properties and micro-hardness were also measured. The results show that combination of casting and forging can improve microstructure and decrease porosity of casting samples, consequently contributing to a better fatigue performance. The ultimate tensile strength and elongation were increased after forging process, however, the yield strength and micro-hardness decreased.


2013 ◽  
Vol 631-632 ◽  
pp. 404-411
Author(s):  
Jia Guo ◽  
Guo Sen Zhu ◽  
Zhi Qiang Yao ◽  
Jie Liu ◽  
Yu Du ◽  
...  

The ingots were rolled by 550 mills in laboratory to obtain dual-phase steels. The influence of the morphology and distribution of ferrite and martensite on mechanical properties of dual-phase steel was investigated. The results indicated that some amount of acicular ferrite transformed in DP steel is available for decreasing the size and homogenizing the distribution of martensite in ferrite base. Meanwhile, the values of yield strength, tensile strength and impact toughness increases apparently, the value of elongation decreases to 22.5% .


2015 ◽  
Vol 827 ◽  
pp. 294-299 ◽  
Author(s):  
Anne Zulfia ◽  
J. Salahuddin ◽  
Hafeizh E. Ahmad

Al-Si-Mg reinforced with Al2O3 nano particles have been made by stir casting method. The vortex produced by stirrer is to distribute the Al2O3 nano particles in the molten aluminium. The volume fraction of Al2O3 nano particles was varied from 0.5, 1, 2, 3, to 5 Vf%, while the addition of magnesium was 3 Vf% as wetting agent to improve the wettability between Al2O3 nano particle and Al-Si-Mg matrix. The effect of Al2O3 on characteristic of Al-Si-Mg composites was studied. It is found that the presence of Al2O3nano particle led to significant improve in mechanical properties, especially at addition of 0.5 Vf% Al2O3. The ultimate tensile strength reached to 154 MPa with 10.24 % elongation, while the hardness reached to 37.7 HRB followed by decrement in wear rate. The porosity level tend to increase with increasing of Al2O3 and caused decrement in mechanical properties.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1228
Author(s):  
Honglin Zhang ◽  
Zhigang Xu ◽  
Laszlo J. Kecskes ◽  
Sergey Yarmolenko ◽  
Jagannathan Sankar

The present work mainly investigated the effect of extrusion temperatures on the microstructure and mechanical properties of Mg-1.3Zn-0.5Ca (wt.%) alloys. The alloys were subjected to extrusion at 300 °C, 350 °C, and 400 °C with an extrusion ratio of 9.37. The results demonstrated that both the average size and volume fraction of dynamic recrystallized (DRXed) grains increased with increasing extrusion temperature (DRXed fractions of 0.43, 0.61, and 0.97 for 300 °C, 350 °C, and 400 °C, respectively). Moreover, the as-extruded alloys exhibited a typical basal fiber texture. The alloy extruded at 300 °C had a microstructure composed of fine DRXed grains of ~1.54 µm and strongly textured elongated unDRXed grains. It also had an ultimate tensile strength (UTS) of 355 MPa, tensile yield strength (TYS) of 284 MPa, and an elongation (EL) of 5.7%. In contrast, after extrusion at 400 °C, the microstructure was almost completely DRXed with a greatly weakened texture, resulting in an improved EL of 15.1% and UTS of 274 MPa, TYS of 220 MPa. At the intermediate temperature of 350 °C, the alloy had a UTS of 298 MPa, TYS of 234 MPa, and EL of 12.8%.


Alloy Digest ◽  
2007 ◽  
Vol 56 (4) ◽  

Abstract MITTAL DI-FORM 140T and HB T965 are low carbon steels with dual phase manganese and silicon composition. Dual-phase (DP) steel microstructures typically consist of a soft ferrite phase with dispersed islands of a hard martensite phase. The martensite phase is substantially stronger than the ferrite phase. The dual-phase grades, including those with high tensile strengths of 965 MPa (140 ksi), that are designed for forming (DI-FORM), also have low yield-strength-to-tensile-strength ratios to improve formability. This datasheet provides information on microstructure and tensile properties as well as deformation and fatigue. It also includes information on forming and surface treatment. Filing Code: SA-566. Producer or source: Mittal Steel USA Flat Products.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 408
Author(s):  
Huizhong Li ◽  
He Lin ◽  
Xiaopeng Liang ◽  
Weiwei He ◽  
Bin Liu ◽  
...  

In this work, an in-situ CoCrFeNi-M6Cp high entropy-alloy (HEA) based hardmetal with a composition of Co25Cr21Fe18Ni23Mo7Nb3WC2 was fabricated by the powder metallurgy (PM) method. Microstructures and mechanical properties of this HEA were characterized and analyzed. The results exhibit that this HEA possesses a two-phase microstructure consisting of the face-centered cubic (FCC) matrix phase and the carbide M6C phase. This HEA has an average grain size of 2.2 μm, and the mean size and volume fraction of carbide particles are 1.2 μm and 20%. The tensile tests show that the alloy has a yield strength of 573 MPa, ultimate tensile strength of 895 MPa and elongation of 5.5% at room temperature. The contributions from different strengthening mechanisms in this HEA were calculated. The grain boundary strengthening is the dominant strengthening mechanism, and the carbide particles are significant for the further enhancement of yield strength by the dislocation strengthening and Orowan strengthening. In addition, with increasing temperatures from 600 °C to 900 °C, the HEA shows a reduced yield strength (YS) from 473 MPa to 142 MPa, a decreased ultimate tensile strength (UTS) from 741 MPa to 165 MPa and an enhanced elongation from 10.5% to 31%.


Sign in / Sign up

Export Citation Format

Share Document