Intelligent Vision Tester Based on Embedded System

2014 ◽  
Vol 971-973 ◽  
pp. 1234-1237
Author(s):  
Xue Feng Yang ◽  
Li Gang Chen

To solve the problem that artificial visual acuity measuring efficiency is low in hospital and school,and waste of resources,this design introduces an intelligent vision test instrument.The instrument is controlled by Embedded system [1,2], including the power supply circuit, a wireless remote control circuit module,LED display circuit,digital display circuit,a voice circuit etc.Beginning of vision test after audio prompt.This time the LED random light under every line in the standard visual acuity chart.The test selects the direction of wireless remote control rocker of "up", "down", "left", "right"through the "E" the opening direction on standard visual acuity chart.Data is transmitted to the Embedded system,after data processing,to judge whether he is right and wrong,and then displayed.Intelligent vision testing instrument can achieve the anticipated goal,finally complete the design and production, The overall structure of the circuit device is simple, stable performance, the test results meet the requirements.

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Zedong Zhang

The IOT gateway is an important link between the sensor network and thecommunication network. The IOT gateway design of the embedded system canrealize the normal access of some different types of sensing systems under the control of software, and is used in various occasions. In the design of the IOT gateway, not only the service functions of the gateway can be realized, but also unified control and remote control of these devices to ensure the security of its communication. This paper analyzes the problem from the hardware and software design of the IOT gateway, expecting to provide reference for relevant personnel.


Agriculture ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 196 ◽  
Author(s):  
Jun Sun ◽  
Xiaofei He ◽  
Xiao Ge ◽  
Xiaohong Wu ◽  
Jifeng Shen ◽  
...  

In the current natural environment, due to the complexity of the background and the high similarity of the color between immature green tomatoes and the plant, the occlusion of the key organs (flower and fruit) by the leaves and stems will lead to low recognition rates and poor generalizations of the detection model. Therefore, an improved tomato organ detection method based on convolutional neural network (CNN) has been proposed in this paper. Based on the original Faster R-CNN algorithm, Resnet-50 with residual blocks was used to replace the traditional vgg16 feature extraction network, and a K-means clustering method was used to adjust more appropriate anchor sizes than manual setting, to improve detection accuracy. The test results showed that the mean average precision (mAP) was significantly improved compared with the traditional Faster R-CNN model. The training model can be transplanted to the embedded system, which lays a theoretical foundation for the development of a precise targeting pesticide application system and an automatic picking device.


2014 ◽  
Vol 1046 ◽  
pp. 352-355
Author(s):  
Song Lin Huang ◽  
Jian Zhong Cui

With the wide application of Internet technology, the embedded system is becoming more and more to develop in the direction of the network. The combination of embedded devices and the Internet represents the future direction of development of embedded systems. In this paper, a microprocessor-based embedded Ethernet solution was presented. The collaborative software and hardware design thought was used in system. TheμC /OS-II operating system, joined the TCP/IP protocol stack, was transplanted to the embedded Ethernet platform. The test results proved that the embedded Ethernet system network communication is stable and reliable.


Author(s):  
Jun Sun ◽  
Xiaofei He ◽  
Xiao Ge ◽  
Xiaohong Wu ◽  
Jifeng Shen ◽  
...  

In the current natural environment, due to the complexity of the background and the high similarity of the color between immature green tomato and plant, the occlusion of the key organs (flower and fruit) by the leaves and stems will lead to low recognition rate and poor generalization of the detection model. Therefore, an improved tomato organ detection method based on convolutional neural network has been proposed in this paper. Based on the original Faster R-CNN algorithm, Resnet-50 with residual blocks was used to replace the traditional vgg16 feature extraction network, and K-means clustering method was used to adjust more appropriate anchor size than manual setting to improve detection accuracy. A variety of data augmentation techniques were used to train the network. The test results showed that compared with the traditional Faster R-CNN model, the mean average precision (mAP) of the optimal model was improved from 85.2% to 90.7%, the memory requirement decreased from 546.9MB to 115.9 MB, and the average detection time was shortened to 0.073S/sheet. As the performance greatly improved, the training model can be transplanted to the embedded system, which lays a theoretical foundation for the development of precise targeting pesticide application system and automatic picking device.


2021 ◽  
Vol 11 (3) ◽  
pp. 1331
Author(s):  
Mohammad Hossein Same ◽  
Gabriel Gleeton ◽  
Gabriel Gandubert ◽  
Preslav Ivanov ◽  
Rene Jr Landry

By increasing the demand for radio frequency (RF) and access of hackers and spoofers to low price hardware and software defined radios (SDR), radio frequency interference (RFI) became a more frequent and serious problem. In order to increase the security of satellite communication (Satcom) and guarantee the quality of service (QoS) of end users, it is crucial to detect the RFI in the desired bandwidth and protect the receiver with a proper mitigation mechanism. Digital narrowband signals are so sensitive into the interference and because of their special power spectrum shape, it is hard to detect and eliminate the RFI from their bandwidth. Thus, a proper detector requires a high precision and smooth estimation of input signal power spectral density (PSD). By utilizing the presented power spectrum by the simplified Welch method, this article proposes a solid and effective algorithm that can find all necessary interference parameters in the frequency domain while targeting practical implantation for the embedded system with minimum complexity. The proposed detector can detect several multi narrowband interferences and estimate their center frequency, bandwidth, power, start, and end of each interference individually. To remove multiple interferences, a chain of several infinite impulse response (IIR) notch filters with multiplexers is proposed. To minimize damage to the original signal, the bandwidth of each notch is adjusted in a way that maximizes the received signal to noise ratio (SNR) by the receiver. Multiple carrier wave interferences (MCWI) is utilized as a jamming attack to the Digital Video Broadcasting-Satellite-Second Generation (DVB-S2) receiver and performance of a new detector and mitigation system is investigated and validated in both simulation and practical tests. Based on the obtained results, the proposed detector can detect a weak power interference down to −25 dB and track a hopping frequency interference with center frequency variation speed up to 3 kHz. Bit error ratio (BER) performance shows 3 dB improvement by utilizing new adaptive mitigation scenario compared to non-adaptive one. Finally, the protected DVB-S2 can receive the data with SNR close to the normal situation while it is under the attack of the MCWI jammer.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 469
Author(s):  
Hyun Woo Oh ◽  
Ji Kwang Kim ◽  
Gwan Beom Hwang ◽  
Seung Eun Lee

Recently, advances in technology have enabled embedded systems to be adopted for a variety of applications. Some of these applications require real-time 2D graphics processing running on limited design specifications such as low power consumption and a small area. In order to satisfy such conditions, including a specific 2D graphics accelerator in the embedded system is an effective method. This method reduces the workload of the processor in the embedded system by exploiting the accelerator. The accelerator assists the system to perform 2D graphics processing in real-time. Therefore, a variety of applications that require 2D graphics processing can be implemented with an embedded processor. In this paper, we present a 2D graphics accelerator for tiny embedded systems. The accelerator includes an optimized line-drawing operation based on Bresenham’s algorithm. The optimized operation enables the accelerator to deal with various kinds of 2D graphics processing and to perform the line-drawing instead of the system processor. Moreover, the accelerator also distributes the workload of the processor core by removing the need for the core to access the frame buffer memory. We measure the performance of the accelerator by implementing the processor, including the accelerator, on a field-programmable gate array (FPGA), and ascertaining the possibility of realization by synthesizing using the 180 nm CMOS process.


Author(s):  
Yong Luo ◽  
Shuai-Bing Qin ◽  
Dong-Shu Wang

With the continuous development of engineering education accreditation in China, its concept has had a profound impact on the reform of various majors in higher education. Using the idea of engineering education accreditation, this paper discusses the main problems in the implementation of embedded experimental courses of electronic information majors and proposes related education reform programs. Taking the embedded system experiment course of the automation major and embedded system major of Zhengzhou University as examples, the course has carried out research on the aspects of teaching model, experimental course content, scientific assessment method, etc., and proposed corresponding improvement methods to achieve better effect. The practical operation result has proved that the embedded system experiment course of the automation major and embedded system major improved the students’ ability and met the requirements of professional accreditation.


2012 ◽  
Vol 460 ◽  
pp. 266-270
Author(s):  
Xing Wu Sun ◽  
Yu Chen ◽  
Ai Fei Wang

According to the shortcomings of large volume and high cost about the plate recognition system, an embedded plate recognition system is developed based on the ARM11 processor at lower costs. Taking the embedded Linux system as the software development platform, the system uses graphical user interface to operate and control the machine. Using CMOS camera system as image acquisition device, the system adopts HSV algorithm to realize the image classification on the platform of the embedded plate recognition system. The experimental results show that the embedded system runs stably, can realize the plate classification by color, and has the advantages of small size, low power consumption, convenience for using and so on. The embedded system provides a new thought for plate recognition.


2014 ◽  
Vol 543-547 ◽  
pp. 2209-2212
Author(s):  
Chun Hua Xiong ◽  
You Jie Zhou ◽  
Gao Jun An ◽  
Chang Bo Lu

Based on the existing contour tracing image recognition technology, combining the embedded system technology and the computer storage control technology, the author makes an integrated design, adopts the image processing chip, USB controller, the imaging sensor and other hardware circuits and develops an intelligent image system. The system can make real-time monitoring the size and change of millimeter-sized irregular target objects. Its applicable value in the fields such as intelligent monitoring of oil equipment, medical imaging and criminal investigation is very high.


Sign in / Sign up

Export Citation Format

Share Document