Influence of Cutting Speed and Offset Distance over Cutting Tool Vibration in Multi-Tool Turning Process

2014 ◽  
Vol 984-985 ◽  
pp. 100-105 ◽  
Author(s):  
R. Kalidasan ◽  
V. Ramanuj ◽  
D.K. Sarma ◽  
S. Senthilvelan

Multi-tool turning process employs more than one cutting tool for machining the work piece simultaneously. In the conventional turning process, effect of machining parameters over cutting forces, vibration, work piece surface finish and dimensional tolerances have been discussed in detail, however no attempt has been made in the multi-tool turning process. Cutting tool vibration is very important as it reveals the condition of cutting tool as well as work piece quality. In this study, a second cutting tool is introduced at the rear side of the lathe with some distance from conventional front cutting tool to machine the work piece simultaneously. Accelerometers are used to measure the vibration signals in the tangential direction of cutting. Obtained time domain vibration signals are converted to frequency domain signals by Fast Fourier Transform to reveal its power spectral density. In this work cutting speed and distance between front and rear cutting tool are varied to understand the cutting tool vibration. With increase in cutting speed and increase in distance between front and rear cutting tool, vibration reduces.

Author(s):  
Menderes Kam ◽  
Mustafa Demirtaş

This study analyzed the tool vibration (Vib) and surface roughness (Ra) during turning of AISI 4340 (34CrNiMo6) tempered steel samples using Taguchi Method. In this context, Taguchi design L18 (21 × 32) was used to analyze the experimental results. The vibration amplitude values from cutting tools were recorded for different machining parameters, control factors; two different sample hardness (46 and 53 HRc), three different cutting speeds (180, 220, 260 m.min−1), and feed rates (0.08, 0.14, 0.20 mm.rev−1) were selected. The machining parameters giving optimum Vib and Ra values were determined. Regression analysis is applied to predict values of Vib and Ra. Analysis of variance was used to determine the effects of machining parameters on the Vib and Ra values. The most important machining parameters were found to be the feed rate, sample hardness, and cutting speed for Vib and Ra, respectively. The lowest Vib and Ra values were obtained in 46 HRc sample as 0.0022 gRMS and 0.255 µm, respectively. The surface quality can be improved by reducing the sources of vibration by using appropriate machining parameters. As a result, there is a significant relationship between Ra and Vib. The lower Ra values were found during turning process of tempered steel samples according to the literature studies. It is suggested that the process can be preferred as an alternative process to grinding process due to lower cost and machining time. In application of the turning of experiment samples by ceramic cutting tool, a substantial technological and economical benefit has been observed.


Author(s):  
Paramesh Chamble ◽  
M. R. Bharath ◽  
K. Lokeshaa ◽  
S. Christopher Ezhil Singh

In this research paper, machining tool vibration occurs because of relative motion between the work piece and the cutting tool, which influences the surface finish of the machined part and the lifespan of the cutting tool. Some of the parameters that influence machining tool vibration include feed rate, depth of cut and spindle speed. In this study, experimentation is carried out on a conventional vertical milling machine to investigate the influence of machining tool vibration on surface roughness during face milling operation of Al6082 alloy with indexable carbide inserts. The eutectic phase for joint of Al6082 is β-Al5FeSi eutectic phase. The machining is done in dry condition under the different combinations of Machining parameters designed through Taguchi L9 orthogonal array. The machining tool vibrations are captured with the help of tri-axial accelerometer. Analysis of variance (ANOVA) technique used to formulate the experimental data to analyze the effect of each parameter and machining tool vibration on surface roughness.


2015 ◽  
Vol 761 ◽  
pp. 93-97
Author(s):  
M.A. Rahman ◽  
Nur Atiqah Md Sadan ◽  
Mohammad Minhat ◽  
Halim Isa ◽  
Abu Bakar Baharudin

Dimensional accuracy plays important criteria in producing high quality machined parts. This is a big challenge to manufacturers of precision components to produce good quality parts with minimum manufacturing error. The focus of this paper is to study the influence of the machine tool rigidity and cutting parameters on dimensional accuracy in turning operation. A method was prepared for identifying the factors effecting dimensional accuracy in a turning process. Experimental setup involved computerized numerical control (CNC) lathe machine, with VBMT 160404 carbide insert and mild steel, as cutting tool and workpiece respectively. The statistical analysis was used for analyzing and determining the accuracy of experimental data through Minitab statistical software. The regressions model was developed. The developed regression model could be used to predict the dimensional precision of the parts based on machine tool vibration and machining parameters during turning process. This is the aspect to be seriously considered and be applied in attaining sustainable machine tool development during design and development stage and its usage. This finding provides useful guidelines for manufacturers to produce high quality machined parts at minimum manufacturing cost. It was found that the cutting speed, feed rate, final part length, vibration x and vibration z have significant effects on dimensional accuracy of the machined parts.


2014 ◽  
Vol 592-594 ◽  
pp. 211-215 ◽  
Author(s):  
R. Kalidasan ◽  
M. Yatin ◽  
D.K. Sarma ◽  
S. Senthilvelan

Productivity enhancement assumes a paramount importance in today’s competitive industrial world. The aim of this work is to improve productivity in a conventional lathe with two single point cutting tools machining a workpiece simultaneously. An additional tool holding fixture is fabricated and integrated so that distance between the two cutting tools can be varied and has a provision to provide individual depth of cut. Experiments were performed on gray cast iron workpiece at different offset distances between the cutting tools, at a particular cutting speed, feed rate and depth of cut. In the multi-tool turning process, lagging rear cutting tool experiences lesser cutting force than leading front cutting tool. This behaviour is due to the machining of front cutting tool preheat as well as reduction of effective cutting speed while machining with rear cutting tool. With increase in offset distance, moment acting on the work piece contributes to increase in resistance against machining and hence front tool experiences higher force than rear cutting tool.


2016 ◽  
Vol 16 (3) ◽  
pp. 183-187 ◽  
Author(s):  
B. Singaravel ◽  
T. Selvaraj

AbstractCutting tool vibration analysis is the effective way to understand the machining characteristics of any material. In the present work, the effect of process parameters on cutting tool vibration is estimated using Taguchi method in turning of EN25 steel. Taguchi method uses Signal-to-Noise ratio (S/N) and Analysis of Variance (ANOVA) to determine the optimum level of process parameters and significant parameters. The results showed that cutting speed of 215 m/min, feed rate of 0.07 mm/rev and depth of cut of 0.5 mm are the optimum combination of process parameters. Cutting speed and depth of cut are the influencing parameters on cutting tool vibration. The results are experimentally verified and the results based on turning process response can be effectively improved.


2017 ◽  
Vol 261 ◽  
pp. 267-274
Author(s):  
Pantelis N. Botsaris ◽  
Chaido Kyritsi ◽  
Dimitris Iliadis

In this paper, there is an attempt to monitor and evaluate machining parameters when turning 34CrNiMo6 material under different cooling and lubrication conditions. The machining parameters concerned are temperature of the cutting tool and the workpiece, level of vibrations of the cutting tool, surface roughness of the workpiece, noise levels of the turning process and current drawn by the main spindle motor. Four different experimental machining scenarios were completed, specifically: conventional wet turning process, dry cutting and two additional modes employing cooling by cold air. Experimental data were acquired and recorded by an optimally designed network of sensors. Experimental data were statistically analyzed in order to reach conclusions. According to the research that has been done, although, overall, minimum cutting tool and workpiece temperatures were observed under wet machining, cold air cooling is capable of achieving comparable cooling results to wet machining. The lowest values of surface roughness were achieved by wet machining, whereas the lowest level of cutting tool vibrations were observed under cold air cooling.


Author(s):  
C. Divya ◽  
L. Suvarna Raju ◽  
B. Singaravel

Turning process is a primary process in engineering industries and optimization of process parameters enhance the machining performance. Inconel 718 is a nickel-based superalloy, widely found applications in the manufacturing of blades, sheets and discs in aircraft engines and rocket engines. It provides toughness at low temperature, with stand high mechanical stresses at elevated temperature and creep resistance. In this work, turning process is carried out on Inconel 718 with micro whole textured cutting inserts filled with solid lubricants. Three different solid lubricants are used namely molybdenum-di-sulfide (MoS2), tungsten-di-sulfide (WS2) and calcium-di-fluoride (CaF2). Experiments are performed as per L9 orthogonal array. Statistical approaches such as orthogonal array, Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) are used to find the importance and effects of machining parameters. In this study, input parameters included are feed, cutting speed and depth of cut and output parameter includes surface roughness. Optimization of process parameters is carried out and the significance is estimated. The result suggested that WS2 followed by MoS2 and CaF2 given good surface finish value. Also, solid lubricant in machining enhances the sustainability in manufacturing.


Author(s):  
S. Saravanamurugan ◽  
B. Shyam Sundar ◽  
R. Sibi Pranav ◽  
A. Shanmugasundaram

2019 ◽  
Vol 287 ◽  
pp. 30-34
Author(s):  
Zwelinzima Mkoko ◽  
Khaled Abou-El-Hossein

In the globally competitive environment, surface roughness and finer tolerances are becoming stringent and certainly most critical for optical components. The aim of this study is to determine the effects of diamond turning process parameters on surface finish when diamond turning RSA 443 alloy having high silicon content. This alloy is a new grade of aluminum that has a potential to be used for production of various optical components. The experiments were conducted based on the Box-Behnken design with three diamond-turning parameters varied at three levels. A mathematical regression model was developed for predicting surface roughness. Further, the analysis of variance was used to analyze the influence of cutting parameters and their interaction in machining. The developed prediction model reveals that cutting speed and feed rate are the most dominant diamond turning factors influencing surface roughness.


2012 ◽  
Vol 445 ◽  
pp. 1041-1046
Author(s):  
Hamed Razavi ◽  
Mohammad Javad Nategh ◽  
H. Soleimanimehr

The experimental investigation of UAT shows that the movement of cutting tool edge relative to the workpiece results from the cutting speed, feed speed and tools vibration in tangential direction affects the lateral machined surface of workpiece and leaves a repeating pattern of toothed regions on it. In UAT process, because of constant feed rate of tool toward workpiece, the cutting tool never separates from workpiece, though the tool rake face may separate periodically from chip in every cycle of vibration. This results in an increase in the surface hardness of the lateral machined surface in comparison with conventional turning (CT). The results of the present study confirm the advantage of UAT as far as the lower cutting force is concerned compared with CT. The higher surface hardness of the lateral surface observed in UAT causes the maximum cutting force to increase but the average force decreases with respect to CT.


Sign in / Sign up

Export Citation Format

Share Document